Cargando…
Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane
BACKGROUND: Induced pluripotent stem cells (iPSCs) can generate epithelial stem cells (EpSCs) as seed cells for skin substitutes to repair skin defects. Here, we investigated the effects of a human acellular amniotic membrane (hAAM) combined with iPSC-derived CD200(+)/ITGA6(+) EpSCs as a skin substi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545005/ https://www.ncbi.nlm.nih.gov/pubmed/31151466 http://dx.doi.org/10.1186/s13287-019-1234-9 |
Sumario: | BACKGROUND: Induced pluripotent stem cells (iPSCs) can generate epithelial stem cells (EpSCs) as seed cells for skin substitutes to repair skin defects. Here, we investigated the effects of a human acellular amniotic membrane (hAAM) combined with iPSC-derived CD200(+)/ITGA6(+) EpSCs as a skin substitute on repairing skin defects in nude mice. METHODS: Human urinary cells isolated from a healthy donor were reprogrammed into iPSCs and then induced into CD200(+)/ITGA6(+) epithelial stem cells. Immunocytochemistry and RT-PCR were used to examine the characteristics of the induced epithelial stem cells. iPSC-derived EpSCs were cultured on a hAAM, and cytocompatibility of the composite was analyzed by CCK8 assays and scanning electron microscopy. Then, hAAMs combined with iPSC-derived EpSCs were transplanted onto skin defects of mice. The effects of this composite on skin repair were evaluated by immunohistochemistry. RESULTS: The results showed that CD200(+)/ITGA6(+) epithelial stem cells induced from iPSCs displayed the phenotypes of hair follicle stem cells. After seeding on the hAAM, iPSC-derived epithelial stem cells had the ability to proliferate. After transplantation, CD200(+)/ITGA6(+) epithelial stem cells on the hAAM promoted the construction of hair follicles and interfollicular epidermis. CONCLUSIONS: These results indicated that transplantation of a hAAM combined with iPS-derived EpSCs is feasible to reconstruct skin and skin appendages, and may be a substantial reference for iPSC-based therapy for skin defects. |
---|