Cargando…
Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method
BACKGROUND: SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome coverage achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, each sample from the comparison group is run individually in mass spectrome...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545036/ https://www.ncbi.nlm.nih.gov/pubmed/31151397 http://dx.doi.org/10.1186/s12967-019-1937-9 |
_version_ | 1783423340637061120 |
---|---|
author | Narasimhan, Mythreyi Kannan, Sadhana Chawade, Aakash Bhattacharjee, Atanu Govekar, Rukmini |
author_facet | Narasimhan, Mythreyi Kannan, Sadhana Chawade, Aakash Bhattacharjee, Atanu Govekar, Rukmini |
author_sort | Narasimhan, Mythreyi |
collection | PubMed |
description | BACKGROUND: SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome coverage achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, each sample from the comparison group is run individually in mass spectrometer and the resulting inter-run variation may influence relative quantification and identification of biomarkers. Normalization of data to diminish this variation thereby becomes an essential step in SWATH data processing. In most reported studies, data normalization methods used are those provided in instrument-based data analysis software or those used for microarray data. This study, for the first time provides an experimental evidence for selection of normalization method optimal for biomarker identification. METHODS: The efficiency of 12 normalization methods to normalize SWATH-MS data was evaluated based on statistical criteria in ‘Normalyzer’—a tool which provides comparative evaluation of normalization by different methods. Further, the suitability of normalized data for biomarker discovery was assessed by evaluating the clustering efficiency of differentiators, identified from the normalized data based on p-value, fold change and both, by hierarchical clustering in Genesis software v.1.8.1. RESULTS: Conventional statistical criteria identified VSN-G as the optimal method for normalization of SWATH data. However, differentiators identified from VSN-G normalized data failed to segregate test and control groups. We thus assessed data normalized by eleven other methods for their ability to yield differentiators which segregate the study groups. Datasets in our study demonstrated that differentiators identified based on p-value from data normalized with Loess-R stratified the study groups optimally. CONCLUSION: This is the first report of experimentally tested strategy for SWATH-MS data processing with an emphasis on identification of clinically relevant biomarkers. Normalization of SWATH-MS data by Loess-R method and identification of differentiators based on p-value were found to be optimal for biomarker discovery in this study. The study also demonstrates the need to base the choice of normalization method on the application of the data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-019-1937-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6545036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65450362019-06-04 Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method Narasimhan, Mythreyi Kannan, Sadhana Chawade, Aakash Bhattacharjee, Atanu Govekar, Rukmini J Transl Med Research BACKGROUND: SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome coverage achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, each sample from the comparison group is run individually in mass spectrometer and the resulting inter-run variation may influence relative quantification and identification of biomarkers. Normalization of data to diminish this variation thereby becomes an essential step in SWATH data processing. In most reported studies, data normalization methods used are those provided in instrument-based data analysis software or those used for microarray data. This study, for the first time provides an experimental evidence for selection of normalization method optimal for biomarker identification. METHODS: The efficiency of 12 normalization methods to normalize SWATH-MS data was evaluated based on statistical criteria in ‘Normalyzer’—a tool which provides comparative evaluation of normalization by different methods. Further, the suitability of normalized data for biomarker discovery was assessed by evaluating the clustering efficiency of differentiators, identified from the normalized data based on p-value, fold change and both, by hierarchical clustering in Genesis software v.1.8.1. RESULTS: Conventional statistical criteria identified VSN-G as the optimal method for normalization of SWATH data. However, differentiators identified from VSN-G normalized data failed to segregate test and control groups. We thus assessed data normalized by eleven other methods for their ability to yield differentiators which segregate the study groups. Datasets in our study demonstrated that differentiators identified based on p-value from data normalized with Loess-R stratified the study groups optimally. CONCLUSION: This is the first report of experimentally tested strategy for SWATH-MS data processing with an emphasis on identification of clinically relevant biomarkers. Normalization of SWATH-MS data by Loess-R method and identification of differentiators based on p-value were found to be optimal for biomarker discovery in this study. The study also demonstrates the need to base the choice of normalization method on the application of the data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-019-1937-9) contains supplementary material, which is available to authorized users. BioMed Central 2019-05-31 /pmc/articles/PMC6545036/ /pubmed/31151397 http://dx.doi.org/10.1186/s12967-019-1937-9 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Narasimhan, Mythreyi Kannan, Sadhana Chawade, Aakash Bhattacharjee, Atanu Govekar, Rukmini Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
title | Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
title_full | Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
title_fullStr | Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
title_full_unstemmed | Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
title_short | Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
title_sort | clinical biomarker discovery by swath-ms based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545036/ https://www.ncbi.nlm.nih.gov/pubmed/31151397 http://dx.doi.org/10.1186/s12967-019-1937-9 |
work_keys_str_mv | AT narasimhanmythreyi clinicalbiomarkerdiscoverybyswathmsbasedlabelfreequantitativeproteomicsimpactofcriteriaforidentificationofdifferentiatorsanddatanormalizationmethod AT kannansadhana clinicalbiomarkerdiscoverybyswathmsbasedlabelfreequantitativeproteomicsimpactofcriteriaforidentificationofdifferentiatorsanddatanormalizationmethod AT chawadeaakash clinicalbiomarkerdiscoverybyswathmsbasedlabelfreequantitativeproteomicsimpactofcriteriaforidentificationofdifferentiatorsanddatanormalizationmethod AT bhattacharjeeatanu clinicalbiomarkerdiscoverybyswathmsbasedlabelfreequantitativeproteomicsimpactofcriteriaforidentificationofdifferentiatorsanddatanormalizationmethod AT govekarrukmini clinicalbiomarkerdiscoverybyswathmsbasedlabelfreequantitativeproteomicsimpactofcriteriaforidentificationofdifferentiatorsanddatanormalizationmethod |