Cargando…

AMF siRNA treatment of keloid through inhibition signaling pathway of RhoA/ROCK1

A keloid (KD) is a benign dermal fibrotic tumor. Treatment of KDs is challenging and the recurrence rate is high; thus, there is an unmet need to explore new target sites and new treatment methods. As a tumor-associated cytokine, autocrine motility factor (AMF) can effectively stimulate the random a...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Yi, Jin, Lan, Zhang, Wenhong, Ya, Zumeng, Cheng, Yuan, Zhao, Hongyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Chongqing Medical University 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545443/
https://www.ncbi.nlm.nih.gov/pubmed/31193978
http://dx.doi.org/10.1016/j.gendis.2018.05.002
Descripción
Sumario:A keloid (KD) is a benign dermal fibrotic tumor. Treatment of KDs is challenging and the recurrence rate is high; thus, there is an unmet need to explore new target sites and new treatment methods. As a tumor-associated cytokine, autocrine motility factor (AMF) can effectively stimulate the random and directional movement of cells. We first found that AMF was overexpressed in keloid fibroblasts (KFs) and the proliferation and migration of KFs were promoted by AMF stimulation. After treatment with Y-27632, RhoA kinase inhibitor, the proliferation and migration capacity of KFs declined significantly, and type I collagen protein, active RhoA and ROCK1 also were downregulated. In addition, a KD transplantation model was established under the skin of nude mice, with KD intramural injection AMF siRNA, we found that the weight of the KD was smaller than in the control group (P < 0.05), KD tissue sections stained by HE and Masson showed that fibers became loose and the blood vessels were visibly reduced. In conclusion, AMF siRNA is expected to be a novel strategy to treat KD by inhibiting signaling pathway of RhoA/ROCK1.