Cargando…
AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification
ChIP-seq is a technique to determine binding locations of transcription factors, which remains a central challenge in molecular biology. Current practice is to use a ‘control’ dataset to remove background signals from a immunoprecipitation (IP) ‘target’ dataset. We introduce the AIControl framework,...
Autores principales: | Hiranuma, Naozumi, Lundberg, Scott M, Lee, Su-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547432/ https://www.ncbi.nlm.nih.gov/pubmed/30869146 http://dx.doi.org/10.1093/nar/gkz156 |
Ejemplares similares
-
Differential peak calling of ChIP-seq signals with replicates with THOR
por: Allhoff, Manuel, et al.
Publicado: (2016) -
ChIP-Enrich: gene set enrichment testing for ChIP-seq data
por: Welch, Ryan P., et al.
Publicado: (2014) -
Picking ChIP-seq peak detectors for analyzing chromatin modification experiments
por: Micsinai, Mariann, et al.
Publicado: (2012) -
RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets
por: Thomas-Chollier, Morgane, et al.
Publicado: (2012) -
Parallel factor ChIP provides essential internal control for quantitative differential ChIP-seq
por: Guertin, Michael J, et al.
Publicado: (2018)