Cargando…
DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning
Interactions between regulatory elements are of crucial importance for the understanding of transcriptional regulation and the interpretation of disease mechanisms. Hi-C technique has been developed for genome-wide detection of chromatin contacts. However, unless extremely deep sequencing is perform...
Autores principales: | Li, Wenran, Wong, Wing Hung, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547469/ https://www.ncbi.nlm.nih.gov/pubmed/30869141 http://dx.doi.org/10.1093/nar/gkz167 |
Ejemplares similares
-
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility
por: Liu, Qiao, et al.
Publicado: (2022) -
Rapid and accurate identification of ribosomal RNA sequences via deep learning
por: Deng, Zhi-Luo, et al.
Publicado: (2022) -
ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures
por: Ye, Tiantian, et al.
Publicado: (2020) -
Uncovering the key dimensions of high-throughput biomolecular data using deep learning
por: Zhang, Shixiong, et al.
Publicado: (2020)