Cargando…
Robust Adaptive Recurrent Cerebellar Model Neural Network for Non-linear System Based on GPSO
A robust adaptive recurrent cerebellar model articulation controller (RARC) neural network for non-linear systems using the genetic particle swarm optimization (GPSO) algorithm is presented in this study. The RARC is used as the principal tracking controller and the robust compensation controller is...
Autores principales: | Guan, Jian-sheng, Hong, Shao-jiang, Kang, Shao-bo, Zeng, Yong, Sun, Yuan, Lin, Chih-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6548856/ https://www.ncbi.nlm.nih.gov/pubmed/31191209 http://dx.doi.org/10.3389/fnins.2019.00390 |
Ejemplares similares
-
Hybrid Neural Network Cerebellar Model Articulation Controller Design for Non-linear Dynamic Time-Varying Plants
por: Le, Tien-Loc, et al.
Publicado: (2020) -
Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models
por: Doruk, R. Ozgur, et al.
Publicado: (2019) -
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
por: Gilra, Aditya, et al.
Publicado: (2017) -
Rapid Decoding of Hand Gestures in Electrocorticography Using Recurrent Neural Networks
por: Pan, Gang, et al.
Publicado: (2018) -
Nonlinear inversion of electrical resistivity sounding data for multi-layered 1-D earth model using global particle swarm optimization (GPSO)
por: Oyeyemi, Kehinde D., et al.
Publicado: (2023)