Cargando…

Scaling growth rates for perovskite oxide virtual substrates on silicon

The availability of native substrates is a cornerstone in the development of microelectronic technologies relying on epitaxial films. If native substrates are not available, virtual substrates - crystalline buffer layers epitaxially grown on a structurally dissimilar substrate - offer a solution. Re...

Descripción completa

Detalles Bibliográficos
Autores principales: Lapano, Jason, Brahlek, Matthew, Zhang, Lei, Roth, Joseph, Pogrebnyakov, Alexej, Engel-Herbert, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549169/
https://www.ncbi.nlm.nih.gov/pubmed/31165726
http://dx.doi.org/10.1038/s41467-019-10273-2
Descripción
Sumario:The availability of native substrates is a cornerstone in the development of microelectronic technologies relying on epitaxial films. If native substrates are not available, virtual substrates - crystalline buffer layers epitaxially grown on a structurally dissimilar substrate - offer a solution. Realizing commercially viable virtual substrates requires the growth of high-quality films at high growth rates for large-scale production. We report the stoichiometric growth of SrTiO(3) exceeding 600 nm hr(−1). This tenfold increase in growth rate compared to SrTiO(3) grown on silicon by conventional methods is enabled by a self-regulated growth window accessible in hybrid molecular beam epitaxy. Overcoming the materials integration challenge for complex oxides on silicon using virtual substrates opens a path to develop new electronic devices in the More than Moore era and silicon integrated quantum computation hardware.