Cargando…
Efficient algorithms to discover alterations with complementary functional association in cancer
Recent large cancer studies have measured somatic alterations in an unprecedented number of tumours. These large datasets allow the identification of cancer-related sets of genetic alterations by identifying relevant combinatorial patterns. Among such patterns, mutual exclusivity has been employed b...
Autores principales: | Sarto Basso, Rebecca, Hochbaum, Dorit S., Vandin, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6550413/ https://www.ncbi.nlm.nih.gov/pubmed/31120875 http://dx.doi.org/10.1371/journal.pcbi.1006802 |
Ejemplares similares
-
Identifying Drug Sensitivity Subnetworks with NETPHIX
por: Kim, Yoo-Ah, et al.
Publicado: (2020) -
Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer
por: Kim, Yoo-Ah, et al.
Publicado: (2020) -
Finding driver pathways in cancer: models and algorithms
por: Vandin, Fabio, et al.
Publicado: (2012) -
Characterizing genomic alterations in cancer by complementary functional associations
por: Kim, J. W., et al.
Publicado: (2016) -
Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs
por: Azmi, Aqil M., et al.
Publicado: (2014)