Cargando…
Attenuating dependence on structural data in computing protein energy landscapes
BACKGROUND: Nearly all cellular processes involve proteins structurally rearranging to accommodate molecular partners. The energy landscape underscores the inherent nature of proteins as dynamic molecules interconverting between structures with varying energies. In principle, reconstructing a protei...
Autores principales: | Morris, David, Maximova, Tatiana, Plaku, Erion, Shehu, Amarda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551245/ https://www.ncbi.nlm.nih.gov/pubmed/31167640 http://dx.doi.org/10.1186/s12859-019-2822-5 |
Ejemplares similares
-
From mutations to mechanisms and dysfunction via computation and mining of protein energy landscapes
por: Qiao, Wanli, et al.
Publicado: (2018) -
Computing energy landscape maps and structural excursions of proteins
por: Sapin, Emmanuel, et al.
Publicado: (2016) -
From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction
por: Akhter, Nasrin, et al.
Publicado: (2018) -
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics
por: Maximova, Tatiana, et al.
Publicado: (2016) -
Unsupervised and Supervised Learning over the Energy Landscape for Protein Decoy Selection
por: Akhter, Nasrin, et al.
Publicado: (2019)