Cargando…
Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs
Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). M...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551489/ https://www.ncbi.nlm.nih.gov/pubmed/31021526 http://dx.doi.org/10.1002/2211-5463.12644 |
_version_ | 1783424400246177792 |
---|---|
author | Foss, Dana V. Schirle, Nicole T. MacRae, Ian J. Pezacki, John Paul |
author_facet | Foss, Dana V. Schirle, Nicole T. MacRae, Ian J. Pezacki, John Paul |
author_sort | Foss, Dana V. |
collection | PubMed |
description | Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). Mutational analysis has identified single amino acid substitutions that reverse this selectivity through new high‐affinity interactions with human miR‐122. Herein, we report crystal structures of complexed p19‐T111S (2.6 Å), p19‐T111H (2.3 Å) and wild‐type p19 protein (2.2 Å) from the Carnation Italian ringspot virus with small interfering RNA (siRNA) ligands. Structural comparisons reveal that these mutations do not lead to major changes in p19 architecture, but instead promote subtle rearrangement of residues and solvent molecules along the p19 midline. These observations suggest p19 uses many small interactions to distinguish siRNAs from miRNAs and perturbing these interactions can create p19 variants with novel RNA‐recognition properties. DATABASE: Model data are deposited in the PDB database under the accession numbers 6BJG, 6BJH and 6BJV. |
format | Online Article Text |
id | pubmed-6551489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-65514892019-06-10 Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs Foss, Dana V. Schirle, Nicole T. MacRae, Ian J. Pezacki, John Paul FEBS Open Bio Research Articles Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). Mutational analysis has identified single amino acid substitutions that reverse this selectivity through new high‐affinity interactions with human miR‐122. Herein, we report crystal structures of complexed p19‐T111S (2.6 Å), p19‐T111H (2.3 Å) and wild‐type p19 protein (2.2 Å) from the Carnation Italian ringspot virus with small interfering RNA (siRNA) ligands. Structural comparisons reveal that these mutations do not lead to major changes in p19 architecture, but instead promote subtle rearrangement of residues and solvent molecules along the p19 midline. These observations suggest p19 uses many small interactions to distinguish siRNAs from miRNAs and perturbing these interactions can create p19 variants with novel RNA‐recognition properties. DATABASE: Model data are deposited in the PDB database under the accession numbers 6BJG, 6BJH and 6BJV. John Wiley and Sons Inc. 2019-05-17 /pmc/articles/PMC6551489/ /pubmed/31021526 http://dx.doi.org/10.1002/2211-5463.12644 Text en © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Foss, Dana V. Schirle, Nicole T. MacRae, Ian J. Pezacki, John Paul Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs |
title | Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs |
title_full | Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs |
title_fullStr | Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs |
title_full_unstemmed | Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs |
title_short | Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs |
title_sort | structural insights into interactions between viral suppressor of rna silencing protein p19 mutants and small rnas |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551489/ https://www.ncbi.nlm.nih.gov/pubmed/31021526 http://dx.doi.org/10.1002/2211-5463.12644 |
work_keys_str_mv | AT fossdanav structuralinsightsintointeractionsbetweenviralsuppressorofrnasilencingproteinp19mutantsandsmallrnas AT schirlenicolet structuralinsightsintointeractionsbetweenviralsuppressorofrnasilencingproteinp19mutantsandsmallrnas AT macraeianj structuralinsightsintointeractionsbetweenviralsuppressorofrnasilencingproteinp19mutantsandsmallrnas AT pezackijohnpaul structuralinsightsintointeractionsbetweenviralsuppressorofrnasilencingproteinp19mutantsandsmallrnas |