Cargando…
Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle
The function of AarF domain-containing kinase 1 (ADCK1) has not been thoroughly revealed. Here we identified that ADCK1 utilizes YME1-like 1 ATPase (YME1L1) to control optic atrophy 1 (OPA1) and inner membrane mitochondrial protein (IMMT) in regulating mitochondrial dynamics and cristae structure. W...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553794/ https://www.ncbi.nlm.nih.gov/pubmed/31125351 http://dx.doi.org/10.1371/journal.pgen.1008184 |
_version_ | 1783424879800877056 |
---|---|
author | Yoon, Woongchang Hwang, Sun-Hong Lee, Sang-Hee Chung, Jongkyeong |
author_facet | Yoon, Woongchang Hwang, Sun-Hong Lee, Sang-Hee Chung, Jongkyeong |
author_sort | Yoon, Woongchang |
collection | PubMed |
description | The function of AarF domain-containing kinase 1 (ADCK1) has not been thoroughly revealed. Here we identified that ADCK1 utilizes YME1-like 1 ATPase (YME1L1) to control optic atrophy 1 (OPA1) and inner membrane mitochondrial protein (IMMT) in regulating mitochondrial dynamics and cristae structure. We firstly observed that a serious developmental impairment occurred in Drosophila ADCK1 (dADCK1) deletion mutant, resulting in premature death before adulthood. By using temperature sensitive ubiquitously expression driver tub-Gal80(ts)/tub-Gal4 or muscle-specific expression driver mhc-Gal4, we observed severely defective locomotive activities and structural abnormality in the muscle along with increased mitochondrial fusion in the dADCK1 knockdown flies. Moreover, decreased mitochondrial membrane potential, ATP production and survival rate along with increased ROS and apoptosis in the flies further demonstrated that the structural abnormalities of mitochondria induced by dADCK1 knockdown led to their functional abnormalities. Consistent with the ADCK1 loss-of-function data in Drosophila, ADCK1 over-expression induced mitochondrial fission and clustering in addition to destruction of the cristae structure in Drosophila and mammalian cells. Interestingly, knockdown of YME1L1 rescued the phenotypes of ADCK1 over-expression. Furthermore, genetic epistasis from fly genetics and mammalian cell biology experiments led us to discover the interactions among IMMT, OPA1 and ADCK1. Collectively, these results established a mitochondrial signaling pathway composed of ADCK1, YME1L1, OPA1 and IMMT, which has essential roles in maintaining mitochondrial morphologies and functions in the muscle. |
format | Online Article Text |
id | pubmed-6553794 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-65537942019-06-17 Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle Yoon, Woongchang Hwang, Sun-Hong Lee, Sang-Hee Chung, Jongkyeong PLoS Genet Research Article The function of AarF domain-containing kinase 1 (ADCK1) has not been thoroughly revealed. Here we identified that ADCK1 utilizes YME1-like 1 ATPase (YME1L1) to control optic atrophy 1 (OPA1) and inner membrane mitochondrial protein (IMMT) in regulating mitochondrial dynamics and cristae structure. We firstly observed that a serious developmental impairment occurred in Drosophila ADCK1 (dADCK1) deletion mutant, resulting in premature death before adulthood. By using temperature sensitive ubiquitously expression driver tub-Gal80(ts)/tub-Gal4 or muscle-specific expression driver mhc-Gal4, we observed severely defective locomotive activities and structural abnormality in the muscle along with increased mitochondrial fusion in the dADCK1 knockdown flies. Moreover, decreased mitochondrial membrane potential, ATP production and survival rate along with increased ROS and apoptosis in the flies further demonstrated that the structural abnormalities of mitochondria induced by dADCK1 knockdown led to their functional abnormalities. Consistent with the ADCK1 loss-of-function data in Drosophila, ADCK1 over-expression induced mitochondrial fission and clustering in addition to destruction of the cristae structure in Drosophila and mammalian cells. Interestingly, knockdown of YME1L1 rescued the phenotypes of ADCK1 over-expression. Furthermore, genetic epistasis from fly genetics and mammalian cell biology experiments led us to discover the interactions among IMMT, OPA1 and ADCK1. Collectively, these results established a mitochondrial signaling pathway composed of ADCK1, YME1L1, OPA1 and IMMT, which has essential roles in maintaining mitochondrial morphologies and functions in the muscle. Public Library of Science 2019-05-24 /pmc/articles/PMC6553794/ /pubmed/31125351 http://dx.doi.org/10.1371/journal.pgen.1008184 Text en © 2019 Yoon et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yoon, Woongchang Hwang, Sun-Hong Lee, Sang-Hee Chung, Jongkyeong Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle |
title | Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle |
title_full | Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle |
title_fullStr | Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle |
title_full_unstemmed | Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle |
title_short | Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle |
title_sort | drosophila adck1 is critical for maintaining mitochondrial structures and functions in the muscle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553794/ https://www.ncbi.nlm.nih.gov/pubmed/31125351 http://dx.doi.org/10.1371/journal.pgen.1008184 |
work_keys_str_mv | AT yoonwoongchang drosophilaadck1iscriticalformaintainingmitochondrialstructuresandfunctionsinthemuscle AT hwangsunhong drosophilaadck1iscriticalformaintainingmitochondrialstructuresandfunctionsinthemuscle AT leesanghee drosophilaadck1iscriticalformaintainingmitochondrialstructuresandfunctionsinthemuscle AT chungjongkyeong drosophilaadck1iscriticalformaintainingmitochondrialstructuresandfunctionsinthemuscle |