Cargando…
Predicting the quality of ryegrass using hyperspectral imaging
BACKGROUND: The quality of forage plants is a crucial component of animal performance and a limiting factor in pasture based production systems. Key forage attributes that may require improvement include the sugar, lipid, protein and energy contents of the vegetative parts of these plants. The aim o...
Autores principales: | Shorten, Paul R., Leath, Shane R., Schmidt, Jana, Ghamkhar, Kioumars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554905/ https://www.ncbi.nlm.nih.gov/pubmed/31182971 http://dx.doi.org/10.1186/s13007-019-0448-2 |
Ejemplares similares
-
Identification of Weeds Based on Hyperspectral Imaging and Machine Learning
por: Li, Yanjie, et al.
Publicado: (2021) -
Real-time, non-destructive and in-field foliage yield and growth rate measurement in perennial ryegrass (Lolium perenne L.)
por: Ghamkhar, Kioumars, et al.
Publicado: (2019) -
Single Seed Near-Infrared Hyperspectral Imaging for Classification of Perennial Ryegrass Seed
por: Reddy, Priyanka, et al.
Publicado: (2023) -
Editorial: Convolutional neural networks and deep learning for crop improvement and production
por: Yang, Wanneng, et al.
Publicado: (2022) -
Retrieval of Hyperspectral Information from Multispectral Data for Perennial Ryegrass Biomass Estimation
por: Togeiro de Alckmin, Gustavo, et al.
Publicado: (2020)