Cargando…

β-Catenin nuclear localization positively feeds back on EGF/EGFR-attenuated AJAP1 expression in breast cancer

BACKGROUND: Adherent junction associated protein 1 (AJAP1), a typical molecule of adherent junctions, has been found to be a tumor suppressor in many cancer types. Aberrant activation of β-catenin has been demonstrated to be associated with malignant biological properties of tumors including breast...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Cong, Liu, Fang, Xiang, Guomin, Cao, Lu, Wang, Shuling, Liu, Jing, Meng, Qingxiang, Xu, Danni, Lv, Shuhua, Jiao, Jiao, Niu, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554977/
https://www.ncbi.nlm.nih.gov/pubmed/31171012
http://dx.doi.org/10.1186/s13046-019-1252-6
Descripción
Sumario:BACKGROUND: Adherent junction associated protein 1 (AJAP1), a typical molecule of adherent junctions, has been found to be a tumor suppressor in many cancer types. Aberrant activation of β-catenin has been demonstrated to be associated with malignant biological properties of tumors including breast cancer. This study aimed to investigate the function and mechanism of AJAP1-mediated β-catenin activity of breast cancer lines in vitro and in breast cancer patients. METHODS: AJAP1 and β-catenin expressions in breast cancer tissues and cell lines were detected by immunohistochemistry, western blotting and qRT-PCR. The EGF/EGFR axis-mediated AJAP1 attenuated β-catenin nuclear location was measured by western blotting, immunofluorescence assay, co-immunoprecipitation, luciferase assay and ubiquitination assays. Furthermore, the function of AJAP1 and β-catenin regulated breast cancer progression was explored both in vivo and in vitro. RESULTS: It was found that AJAP1 had a high negative correlation with β-catenin nuclear expression and was a novel tumor suppressor in breast cancer. AJAP1 loss can mediate β-catenin accumulated in cytoplasm and then transferred it to the nucleus, activating β-catenin transcriptional activity and downstream genes. Additionally, β-catenin can reverse the invasion, proliferation ability and tumorigenicity of the depletion of AJAP1 caused both in vivo and in vitro. Besides, EGF/EGFR also involved in the process of AJAP1-depiction induced β-catenin transactivation to the nucleus. More importantly, EGFR depletion/AJAP1 knocked down promoted the progression of breast cancer by regulating the activity of β-catenin nuclear transactivation. CONCLUSION: This study demonstrated that AJAP1 acted as a putative tumor suppressor while β-catenin nuclear localization positively fed back on EGF/EGFR-attenuated AJAP1 expression in breast cancer, which might be beneficial to develop new therapeutic targets for decreasing nuclear β-catenin-mediated malignancy in breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1252-6) contains supplementary material, which is available to authorized users.