Cargando…
Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs
Determining the target genes that interact with drugs—drug–target interactions—plays an important role in drug discovery. Identification of drug–target interactions through biological experiments is time consuming, laborious, and costly. Therefore, using computational approaches to predict candidate...
Autores principales: | Xuan, Ping, Sun, Chang, Zhang, Tiangang, Ye, Yilin, Shen, Tonghui, Dong, Yihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555260/ https://www.ncbi.nlm.nih.gov/pubmed/31214240 http://dx.doi.org/10.3389/fgene.2019.00459 |
Ejemplares similares
-
ACP-GBDT: An improved anticancer peptide identification method with gradient boosting decision tree
por: Li, Yanjuan, et al.
Publicado: (2023) -
Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree
por: Li, Ke, et al.
Publicado: (2021) -
PredPRBA: Prediction of Protein-RNA Binding Affinity Using Gradient Boosted Regression Trees
por: Deng, Lei, et al.
Publicado: (2019) -
Identification of cyclin protein using gradient boost decision tree algorithm
por: Zulfiqar, Hasan, et al.
Publicado: (2021) -
Clinical Prediction of Heart Failure in Hemodialysis Patients: Based on the Extreme Gradient Boosting Method
por: Wang, Yanfeng, et al.
Publicado: (2022)