Cargando…
Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features
Drug screening studies typically involve assaying the sensitivity of a range of cancer cell lines across an array of anti-cancer therapeutics. Alongside these sensitivity measurements high dimensional molecular characterizations of the cell lines are typically available, including gene expression, c...
Autores principales: | Knowles, David A., Bouchard, Gina, Plevritis, Sylvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555538/ https://www.ncbi.nlm.nih.gov/pubmed/31136571 http://dx.doi.org/10.1371/journal.pcbi.1006743 |
Ejemplares similares
-
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Discriminating Pathological and Non-pathological Internet Gamers Using Sparse Neuroanatomical Features
por: Park, Chang-hyun, et al.
Publicado: (2018) -
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
por: Liu, Hailong, et al.
Publicado: (2018) -
Sparse feature selection for classification and prediction of metastasis in endometrial cancer
por: Ahsen, Mehmet Eren, et al.
Publicado: (2017)