Cargando…
Protein-protein interaction prediction using a hybrid feature representation and a stacked generalization scheme
BACKGROUND: Although various machine learning-based predictors have been developed for estimating protein–protein interactions, their performances vary with dataset and species, and are affected by two primary aspects: choice of learning algorithm, and the representation of protein pairs. To improve...
Autores principales: | Chen, Kuan-Hsi, Wang, Tsai-Feng, Hu, Yuh-Jyh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558856/ https://www.ncbi.nlm.nih.gov/pubmed/31182027 http://dx.doi.org/10.1186/s12859-019-2907-1 |
Ejemplares similares
-
Residue–Residue Interaction Prediction via Stacked Meta-Learning
por: Chen, Kuan-Hsi, et al.
Publicado: (2021) -
Protein structure search and local structure characterization
por: Ku, Shih-Yen, et al.
Publicado: (2008) -
IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
por: Pan, Xiaoyong, et al.
Publicado: (2016) -
RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information
por: Yi, Hai-Cheng, et al.
Publicado: (2020) -
Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest
por: You, Zhu-Hong, et al.
Publicado: (2015)