Cargando…
Development of visual predictive checks accounting for multimodal parameter distributions in mixture models
The assumption of interindividual variability being unimodally distributed in nonlinear mixed effects models does not hold when the population under study displays multimodal parameter distributions. Mixture models allow the identification of parameters characteristic to a subpopulation by describin...
Autores principales: | Arshad, Usman, Chasseloup, Estelle, Nordgren, Rikard, Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560505/ https://www.ncbi.nlm.nih.gov/pubmed/30968312 http://dx.doi.org/10.1007/s10928-019-09632-9 |
Ejemplares similares
-
Comparison of covariate selection methods with correlated covariates: prior information versus data information, or a mixture of both?
por: Chasseloup, Estelle, et al.
Publicado: (2020) -
Comparison of Seven Non-Linear Mixed Effect Model-Based Approaches to Test for Treatment Effect
por: Chasseloup, Estelle, et al.
Publicado: (2023) -
Assessing Treatment Effects with Pharmacometric Models: A New Method that Addresses Problems with Standard Assessments
por: Chasseloup, Estelle, et al.
Publicado: (2021) -
Generation and application of avatars in pharmacometric modelling
por: Chasseloup, Estelle, et al.
Publicado: (2023) -
Direct Measurement of Sedimentation Coefficient Distributions in Multimodal Nanoparticle Mixtures
por: Plüisch, Claudia Simone, et al.
Publicado: (2021)