Cargando…
Molecular screening and docking analysis of LMTK3and AKT1 combined inhibitors
The abnormal activation of AKT/mTOR signaling pathway and overexpression of LMTK3, are the main factors involved in the generation of drug resistance. Therefore, the use of computer-aided drug design in the inhibitors discovery offers an advantage to provide new candidates for the treatment of this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563661/ https://www.ncbi.nlm.nih.gov/pubmed/31223209 http://dx.doi.org/10.6026/97320630014499 |
Sumario: | The abnormal activation of AKT/mTOR signaling pathway and overexpression of LMTK3, are the main factors involved in the generation of drug resistance. Therefore, the use of computer-aided drug design in the inhibitors discovery offers an advantage to provide new candidates for the treatment of this resistance. We realised the virtual screening and molecular docking of AKT1 and LMTK3 proteins by the Dockblaster server. In addition, with abundance of candidates under development for AKT1 kinase, we have also conducted a Quantitative Structure-Activity Relationship (QSAR) study based on these compounds, in order to design more active compounds and predict their activity for development of a new inhibitor of AKT1. QSAR tests were performed for AKT1 using the Partial Least Squares method with a correlation coefficient of R2=0.8062 and a cross-validation of q2=0.6995. This test has selected five compounds as competitive inhibitors-AKT1-ATP with a better biological activities. In parallel the molecular screening has selected five other compounds as competitive ATP-inhibitors of LMTK3. One of them is a common inhibitor with AKT1, and it is marketed as a moderate to severe pain therapy. The ADME predictions confirmed the inhibitors pharmacological activity of these compounds for potential consideration as drug candidates. |
---|