Cargando…
Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts
Background: Increasing research has recently been focused on the supplementary use of drugs such as bisphosphonates that are known to influence bone turnover to prevent and treat periprosthetic bone loss and subsequent implant loosening following total joint replacements. However, there are still co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566742/ https://www.ncbi.nlm.nih.gov/pubmed/31217743 http://dx.doi.org/10.7150/ijms.32612 |
_version_ | 1783426918457016320 |
---|---|
author | Huang, Kuo-Chin Huang, Tsan-Wen Chuang, Po-Yao Yang, Tien-Yu Chang, Shun-Fu |
author_facet | Huang, Kuo-Chin Huang, Tsan-Wen Chuang, Po-Yao Yang, Tien-Yu Chang, Shun-Fu |
author_sort | Huang, Kuo-Chin |
collection | PubMed |
description | Background: Increasing research has recently been focused on the supplementary use of drugs such as bisphosphonates that are known to influence bone turnover to prevent and treat periprosthetic bone loss and subsequent implant loosening following total joint replacements. However, there are still concerns about the conflicting effects of bisphosphonate treatment on osteoblastic bone formation in the literature. Methods: In this study, we investigate the role of zoledronate (ZOL) in regulating cell cycle distribution and differentiation in mouse MC3T3-E1 preosteoblasts and also explore the mechanism underlying this effect of ZOL. We examined the expression levels of osteocalcin (OCN) by quantitative polymerase chain reaction (qPCR), the total amount of CDK6, p21 and p27 proteins by Western blot analysis, and the cell cycle distribution by flow cytometric analysis in mouse MC3T3-E1 preosteoblasts to evaluate the effect of ZOL. Small interfering RNAs (siRNAs) were used to assess the individual contributions of genes to specific osteoblast phenotypes. Results: In addition to increased OCN expression, we found that ZOL treatment induces the G(0)/G(1) arrest and results in the increase of p21 and p27 expressions and decrease of CDK6 expression in mouse MC3T3-E1 preosteoblasts. Both p21 and p27 mediates ZOL-induced cell cycle exit; however, p21, but not p27, is responsible for the increase of ZOL-induced OCN expression in these cells. Conclusions: These results endorse that ZOL might have an anabolic effect on osteoblasts. The CDK inhibitor p21 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in mouse MC3T3-E1 preosteoblasts. |
format | Online Article Text |
id | pubmed-6566742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-65667422019-06-19 Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts Huang, Kuo-Chin Huang, Tsan-Wen Chuang, Po-Yao Yang, Tien-Yu Chang, Shun-Fu Int J Med Sci Research Paper Background: Increasing research has recently been focused on the supplementary use of drugs such as bisphosphonates that are known to influence bone turnover to prevent and treat periprosthetic bone loss and subsequent implant loosening following total joint replacements. However, there are still concerns about the conflicting effects of bisphosphonate treatment on osteoblastic bone formation in the literature. Methods: In this study, we investigate the role of zoledronate (ZOL) in regulating cell cycle distribution and differentiation in mouse MC3T3-E1 preosteoblasts and also explore the mechanism underlying this effect of ZOL. We examined the expression levels of osteocalcin (OCN) by quantitative polymerase chain reaction (qPCR), the total amount of CDK6, p21 and p27 proteins by Western blot analysis, and the cell cycle distribution by flow cytometric analysis in mouse MC3T3-E1 preosteoblasts to evaluate the effect of ZOL. Small interfering RNAs (siRNAs) were used to assess the individual contributions of genes to specific osteoblast phenotypes. Results: In addition to increased OCN expression, we found that ZOL treatment induces the G(0)/G(1) arrest and results in the increase of p21 and p27 expressions and decrease of CDK6 expression in mouse MC3T3-E1 preosteoblasts. Both p21 and p27 mediates ZOL-induced cell cycle exit; however, p21, but not p27, is responsible for the increase of ZOL-induced OCN expression in these cells. Conclusions: These results endorse that ZOL might have an anabolic effect on osteoblasts. The CDK inhibitor p21 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in mouse MC3T3-E1 preosteoblasts. Ivyspring International Publisher 2019-05-10 /pmc/articles/PMC6566742/ /pubmed/31217743 http://dx.doi.org/10.7150/ijms.32612 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Huang, Kuo-Chin Huang, Tsan-Wen Chuang, Po-Yao Yang, Tien-Yu Chang, Shun-Fu Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts |
title | Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts |
title_full | Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts |
title_fullStr | Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts |
title_full_unstemmed | Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts |
title_short | Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts |
title_sort | zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse mc3t3-e1 preosteoblasts |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566742/ https://www.ncbi.nlm.nih.gov/pubmed/31217743 http://dx.doi.org/10.7150/ijms.32612 |
work_keys_str_mv | AT huangkuochin zoledronateinducescellcyclearrestanddifferentiationbyupregulatingp21inmousemc3t3e1preosteoblasts AT huangtsanwen zoledronateinducescellcyclearrestanddifferentiationbyupregulatingp21inmousemc3t3e1preosteoblasts AT chuangpoyao zoledronateinducescellcyclearrestanddifferentiationbyupregulatingp21inmousemc3t3e1preosteoblasts AT yangtienyu zoledronateinducescellcyclearrestanddifferentiationbyupregulatingp21inmousemc3t3e1preosteoblasts AT changshunfu zoledronateinducescellcyclearrestanddifferentiationbyupregulatingp21inmousemc3t3e1preosteoblasts |