Cargando…

Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy

BACKGROUND: Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson’s disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jia-Zhen, Ardah, Mustafa, Haikal, Caroline, Svanbergsson, Alexander, Diepenbroek, Meike, Vaikath, Nishant N., Li, Wen, Wang, Zhan-You, Outeiro, Tiago F., El-Agnaf, Omar M., Li, Jia-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570948/
https://www.ncbi.nlm.nih.gov/pubmed/31223479
http://dx.doi.org/10.1186/s40035-019-0159-7
Descripción
Sumario:BACKGROUND: Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson’s disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation processes of α-synuclein. Dysfunction of the CMA pathway impairs α-synuclein degradation and causes cytotoxicity. RESULTS: In the present study, we investigated the effects on the CMA pathway and α-synuclein aggregation using bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal plants. In both cell-free and cellular models of α-synuclein aggregation, after administration of DHM and Sal B, we observed significant inhibition of α-synuclein accumulation and aggregation. Cells were co-transfected with a C-terminal modified α-synuclein (SynT) and synphilin-1, and then treated with DHM (10 μM) and Sal B (50 μM) 16 hours after transfection; levels of α-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B). Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A with α-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and LAMP-2A both in vitro and in vivo, along with decreased levels of α-synuclein. Moreover, DHM and Sal B treatments exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-α-syn-GFP transgenic mice. CONCLUSIONS: Our data indicate that DHM and Sal B are effective in modulating α-synuclein accumulation and aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson’s disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40035-019-0159-7) contains supplementary material, which is available to authorized users.