Cargando…

Visualization of Polymer Crystallization by In Situ Combination of Atomic Force Microscopy and Fast Scanning Calorimetry

A chip-based fast scanning calorimeter (FSC) is used as a fast hot-stage in an atomic force microscope (AFM). This way, the morphology of materials with a resolution from micrometers to nanometers after fast thermal treatments becomes accessible. An FSC can treat the sample isothermally or at heatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Zhuravlev, Evgeny, Androsch, René, Schick, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572680/
https://www.ncbi.nlm.nih.gov/pubmed/31096647
http://dx.doi.org/10.3390/polym11050890
Descripción
Sumario:A chip-based fast scanning calorimeter (FSC) is used as a fast hot-stage in an atomic force microscope (AFM). This way, the morphology of materials with a resolution from micrometers to nanometers after fast thermal treatments becomes accessible. An FSC can treat the sample isothermally or at heating and cooling rates up to 1 MK/s. The short response time of the FSC in the order of milliseconds enables rapid changes from scanning to isothermal modes and vice versa. Additionally, FSC provides crystallization/melting curves of the sample just imaged by AFM. We describe a combined AFM-FSC device, where the AFM sample holder is replaced by the FSC chip-sensor. The sample can be repeatedly annealed at pre-defined temperatures and times and the AFM images can be taken from exactly the same spot of the sample. The AFM-FSC combination is used for the investigation of crystallization of polyamide 66 (PA 66), poly(ether ether ketone) (PEEK), poly(butylene terephthalate) (PBT) and poly(ε-caprolactone) (PCL).