Cargando…
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
The relationship between noncoding DNA sequence and gene expression is not well-understood. Massively parallel reporter assays (MPRAs), which quantify the regulatory activity of large libraries of DNA sequences in parallel, are a powerful approach to characterize this relationship. We present MPRA-D...
Autores principales: | Movva, Rajiv, Greenside, Peyton, Marinov, Georgi K., Nair, Surag, Shrikumar, Avanti, Kundaje, Anshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6576758/ https://www.ncbi.nlm.nih.gov/pubmed/31206543 http://dx.doi.org/10.1371/journal.pone.0218073 |
Ejemplares similares
-
Discovering epistatic feature interactions from neural network models of regulatory DNA sequences
por: Greenside, Peyton, et al.
Publicado: (2018) -
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
por: Shrikumar, Avanti, et al.
Publicado: (2019) -
Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts
por: Nair, Surag, et al.
Publicado: (2019) -
Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures
por: Greenside, Peyton, et al.
Publicado: (2018) -
Domain-adaptive neural networks improve cross-species prediction of transcription factor binding
por: Cochran, Kelly, et al.
Publicado: (2022)