Cargando…
The dynamic conformational landscape of the protein methyltransferase SETD8
Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational land...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579520/ https://www.ncbi.nlm.nih.gov/pubmed/31081496 http://dx.doi.org/10.7554/eLife.45403 |
_version_ | 1783427874126036992 |
---|---|
author | Chen, Shi Wiewiora, Rafal P Meng, Fanwang Babault, Nicolas Ma, Anqi Yu, Wenyu Qian, Kun Hu, Hao Zou, Hua Wang, Junyi Fan, Shijie Blum, Gil Pittella-Silva, Fabio Beauchamp, Kyle A Tempel, Wolfram Jiang, Hualiang Chen, Kaixian Skene, Robert J Zheng, Yujun George Brown, Peter J Jin, Jian Luo, Cheng Chodera, John D Luo, Minkui |
author_facet | Chen, Shi Wiewiora, Rafal P Meng, Fanwang Babault, Nicolas Ma, Anqi Yu, Wenyu Qian, Kun Hu, Hao Zou, Hua Wang, Junyi Fan, Shijie Blum, Gil Pittella-Silva, Fabio Beauchamp, Kyle A Tempel, Wolfram Jiang, Hualiang Chen, Kaixian Skene, Robert J Zheng, Yujun George Brown, Peter J Jin, Jian Luo, Cheng Chodera, John D Luo, Minkui |
author_sort | Chen, Shi |
collection | PubMed |
description | Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT), which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state models, built via an automated machine learning approach and corroborated experimentally, reveal how slow conformational motions and conformational states are relevant to catalysis. These findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via its detailed conformational landscape. |
format | Online Article Text |
id | pubmed-6579520 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-65795202019-06-19 The dynamic conformational landscape of the protein methyltransferase SETD8 Chen, Shi Wiewiora, Rafal P Meng, Fanwang Babault, Nicolas Ma, Anqi Yu, Wenyu Qian, Kun Hu, Hao Zou, Hua Wang, Junyi Fan, Shijie Blum, Gil Pittella-Silva, Fabio Beauchamp, Kyle A Tempel, Wolfram Jiang, Hualiang Chen, Kaixian Skene, Robert J Zheng, Yujun George Brown, Peter J Jin, Jian Luo, Cheng Chodera, John D Luo, Minkui eLife Biochemistry and Chemical Biology Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT), which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state models, built via an automated machine learning approach and corroborated experimentally, reveal how slow conformational motions and conformational states are relevant to catalysis. These findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via its detailed conformational landscape. eLife Sciences Publications, Ltd 2019-05-13 /pmc/articles/PMC6579520/ /pubmed/31081496 http://dx.doi.org/10.7554/eLife.45403 Text en © 2019, Chen et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Chen, Shi Wiewiora, Rafal P Meng, Fanwang Babault, Nicolas Ma, Anqi Yu, Wenyu Qian, Kun Hu, Hao Zou, Hua Wang, Junyi Fan, Shijie Blum, Gil Pittella-Silva, Fabio Beauchamp, Kyle A Tempel, Wolfram Jiang, Hualiang Chen, Kaixian Skene, Robert J Zheng, Yujun George Brown, Peter J Jin, Jian Luo, Cheng Chodera, John D Luo, Minkui The dynamic conformational landscape of the protein methyltransferase SETD8 |
title | The dynamic conformational landscape of the protein methyltransferase SETD8 |
title_full | The dynamic conformational landscape of the protein methyltransferase SETD8 |
title_fullStr | The dynamic conformational landscape of the protein methyltransferase SETD8 |
title_full_unstemmed | The dynamic conformational landscape of the protein methyltransferase SETD8 |
title_short | The dynamic conformational landscape of the protein methyltransferase SETD8 |
title_sort | dynamic conformational landscape of the protein methyltransferase setd8 |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579520/ https://www.ncbi.nlm.nih.gov/pubmed/31081496 http://dx.doi.org/10.7554/eLife.45403 |
work_keys_str_mv | AT chenshi thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT wiewiorarafalp thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT mengfanwang thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT babaultnicolas thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT maanqi thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT yuwenyu thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT qiankun thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT huhao thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT zouhua thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT wangjunyi thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT fanshijie thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT blumgil thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT pittellasilvafabio thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT beauchampkylea thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT tempelwolfram thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT jianghualiang thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT chenkaixian thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT skenerobertj thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT zhengyujungeorge thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT brownpeterj thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT jinjian thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT luocheng thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT choderajohnd thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT luominkui thedynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT chenshi dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT wiewiorarafalp dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT mengfanwang dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT babaultnicolas dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT maanqi dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT yuwenyu dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT qiankun dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT huhao dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT zouhua dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT wangjunyi dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT fanshijie dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT blumgil dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT pittellasilvafabio dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT beauchampkylea dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT tempelwolfram dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT jianghualiang dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT chenkaixian dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT skenerobertj dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT zhengyujungeorge dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT brownpeterj dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT jinjian dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT luocheng dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT choderajohnd dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 AT luominkui dynamicconformationallandscapeoftheproteinmethyltransferasesetd8 |