Cargando…
A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo
Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579609/ https://www.ncbi.nlm.nih.gov/pubmed/30118958 http://dx.doi.org/10.1016/j.scr.2018.07.022 |
_version_ | 1783427890320244736 |
---|---|
author | Spangler, Abby Su, Emily Y. Craft, April M. Cahan, Patrick |
author_facet | Spangler, Abby Su, Emily Y. Craft, April M. Cahan, Patrick |
author_sort | Spangler, Abby |
collection | PubMed |
description | Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent to differentiation. Here, we used a combination of bulk RNA-Seq, single cell RNA-Seq, and bioinformatics analyses to dissect the cell types that emerge during directed differentiation of mouse embryonic stem cells as embryoid bodies and we compared them to spatially and temporally resolved transcriptional profiles of early embryos. Our single cell analyses of the day 4 embryoid bodies revealed three populations which had retained related yet distinct pluripotent signatures that resemble the pre- or post-implantation epiblast, one population of presumptive neuroectoderm, one population of mesendoderm, and four populations of neural progenitors. By day 6, the neural progenitors predominated the embryoid bodies, but both a small population of pluripotent-like cells and an anterior mesoderm-like Brachyury-expressing population were present. By comparing the day 4 and day 6 populations, we identified candidate differentiation paths, transcription factors, and signaling pathways that mark the in vitro correlate of the transition from the mid-to-late primitive streak stage. |
format | Online Article Text |
id | pubmed-6579609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-65796092019-06-17 A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo Spangler, Abby Su, Emily Y. Craft, April M. Cahan, Patrick Stem Cell Res Article Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent to differentiation. Here, we used a combination of bulk RNA-Seq, single cell RNA-Seq, and bioinformatics analyses to dissect the cell types that emerge during directed differentiation of mouse embryonic stem cells as embryoid bodies and we compared them to spatially and temporally resolved transcriptional profiles of early embryos. Our single cell analyses of the day 4 embryoid bodies revealed three populations which had retained related yet distinct pluripotent signatures that resemble the pre- or post-implantation epiblast, one population of presumptive neuroectoderm, one population of mesendoderm, and four populations of neural progenitors. By day 6, the neural progenitors predominated the embryoid bodies, but both a small population of pluripotent-like cells and an anterior mesoderm-like Brachyury-expressing population were present. By comparing the day 4 and day 6 populations, we identified candidate differentiation paths, transcription factors, and signaling pathways that mark the in vitro correlate of the transition from the mid-to-late primitive streak stage. 2018-07-29 2018-08 /pmc/articles/PMC6579609/ /pubmed/30118958 http://dx.doi.org/10.1016/j.scr.2018.07.022 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Spangler, Abby Su, Emily Y. Craft, April M. Cahan, Patrick A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
title | A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
title_full | A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
title_fullStr | A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
title_full_unstemmed | A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
title_short | A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
title_sort | single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579609/ https://www.ncbi.nlm.nih.gov/pubmed/30118958 http://dx.doi.org/10.1016/j.scr.2018.07.022 |
work_keys_str_mv | AT spanglerabby asinglecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT suemilyy asinglecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT craftaprilm asinglecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT cahanpatrick asinglecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT spanglerabby singlecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT suemilyy singlecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT craftaprilm singlecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo AT cahanpatrick singlecelltranscriptionalportraitofembryoidbodydifferentiationandcomparisontoprogenitorsofthedevelopingembryo |