Cargando…
Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice
PET scans of the mouse brain are usually performed with anesthesia to immobilize the animal. However, it is desirable to avoid the confounding factor of anesthesia in mouse-brain response. Methods: We developed and validated brain PET imaging of awake, freely moving mice. Head-motion tracking was pe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Nuclear Medicine
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581220/ https://www.ncbi.nlm.nih.gov/pubmed/30442754 http://dx.doi.org/10.2967/jnumed.118.218669 |
_version_ | 1783428145187127296 |
---|---|
author | Miranda, Alan Glorie, Dorien Bertoglio, Daniele Vleugels, Jochen De Bruyne, Guido Stroobants, Sigrid Staelens, Steven Verhaeghe, Jeroen |
author_facet | Miranda, Alan Glorie, Dorien Bertoglio, Daniele Vleugels, Jochen De Bruyne, Guido Stroobants, Sigrid Staelens, Steven Verhaeghe, Jeroen |
author_sort | Miranda, Alan |
collection | PubMed |
description | PET scans of the mouse brain are usually performed with anesthesia to immobilize the animal. However, it is desirable to avoid the confounding factor of anesthesia in mouse-brain response. Methods: We developed and validated brain PET imaging of awake, freely moving mice. Head-motion tracking was performed using radioactive point-source markers, and we used the tracking information for PET-image motion correction. Regional (18)F-FDG brain uptake in a test, retest, and memantine-challenge study was measured in awake (n = 8) and anesthetized (n = 8) C57BL/6 mice. An awake uptake period was considered for the anesthesia scans. Results: Awake (motion-corrected) PET images showed an (18)F-FDG uptake pattern comparable to the pattern of anesthetized mice. The test–retest variability (represented by the intraclass correlation coefficient) of the regional SUV quantification in the awake animals (0.424–0.555) was marginally lower than that in the anesthetized animals (intraclass correlation coefficient, 0.491–0.629) over the different regions. The increased memantine-induced (18)F-FDG uptake was more pronounced in awake (+63.6%) than in anesthetized (+24.2%) animals. Additional behavioral information, acquired for awake animals, showed increased motor activity on a memantine challenge (total distance traveled, 18.2 ± 5.28 m) compared with test–retest (6.49 ± 2.21 m). Conclusion: The present method enables brain PET imaging on awake mice, thereby avoiding the confounding effects of anesthesia on the PET reading. It allows the simultaneous measurement of behavioral information during PET acquisitions. The method does not require any additional hardware, and it can be deployed in typical high-throughput scan protocols. |
format | Online Article Text |
id | pubmed-6581220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Society of Nuclear Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-65812202019-06-21 Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice Miranda, Alan Glorie, Dorien Bertoglio, Daniele Vleugels, Jochen De Bruyne, Guido Stroobants, Sigrid Staelens, Steven Verhaeghe, Jeroen J Nucl Med Neurology PET scans of the mouse brain are usually performed with anesthesia to immobilize the animal. However, it is desirable to avoid the confounding factor of anesthesia in mouse-brain response. Methods: We developed and validated brain PET imaging of awake, freely moving mice. Head-motion tracking was performed using radioactive point-source markers, and we used the tracking information for PET-image motion correction. Regional (18)F-FDG brain uptake in a test, retest, and memantine-challenge study was measured in awake (n = 8) and anesthetized (n = 8) C57BL/6 mice. An awake uptake period was considered for the anesthesia scans. Results: Awake (motion-corrected) PET images showed an (18)F-FDG uptake pattern comparable to the pattern of anesthetized mice. The test–retest variability (represented by the intraclass correlation coefficient) of the regional SUV quantification in the awake animals (0.424–0.555) was marginally lower than that in the anesthetized animals (intraclass correlation coefficient, 0.491–0.629) over the different regions. The increased memantine-induced (18)F-FDG uptake was more pronounced in awake (+63.6%) than in anesthetized (+24.2%) animals. Additional behavioral information, acquired for awake animals, showed increased motor activity on a memantine challenge (total distance traveled, 18.2 ± 5.28 m) compared with test–retest (6.49 ± 2.21 m). Conclusion: The present method enables brain PET imaging on awake mice, thereby avoiding the confounding effects of anesthesia on the PET reading. It allows the simultaneous measurement of behavioral information during PET acquisitions. The method does not require any additional hardware, and it can be deployed in typical high-throughput scan protocols. Society of Nuclear Medicine 2019-06 /pmc/articles/PMC6581220/ /pubmed/30442754 http://dx.doi.org/10.2967/jnumed.118.218669 Text en © 2019 by the Society of Nuclear Medicine and Molecular Imaging. Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications. License: https://creativecommons.org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.xhtml. |
spellingShingle | Neurology Miranda, Alan Glorie, Dorien Bertoglio, Daniele Vleugels, Jochen De Bruyne, Guido Stroobants, Sigrid Staelens, Steven Verhaeghe, Jeroen Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice |
title | Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice |
title_full | Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice |
title_fullStr | Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice |
title_full_unstemmed | Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice |
title_short | Awake (18)F-FDG PET Imaging of Memantine-Induced Brain Activation and Test–Retest in Freely Running Mice |
title_sort | awake (18)f-fdg pet imaging of memantine-induced brain activation and test–retest in freely running mice |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581220/ https://www.ncbi.nlm.nih.gov/pubmed/30442754 http://dx.doi.org/10.2967/jnumed.118.218669 |
work_keys_str_mv | AT mirandaalan awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT gloriedorien awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT bertogliodaniele awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT vleugelsjochen awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT debruyneguido awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT stroobantssigrid awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT staelenssteven awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice AT verhaeghejeroen awake18ffdgpetimagingofmemantineinducedbrainactivationandtestretestinfreelyrunningmice |