Cargando…
Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences
MOTIVATION: In RNA-seq differential expression analysis, investigators aim to detect those genes with changes in expression level across conditions, despite technical and biological variability in the observations. A common task is to accurately estimate the effect size, often in terms of a logarith...
Autores principales: | Zhu, Anqi, Ibrahim, Joseph G, Love, Michael I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581436/ https://www.ncbi.nlm.nih.gov/pubmed/30395178 http://dx.doi.org/10.1093/bioinformatics/bty895 |
Ejemplares similares
-
Robust Interacting Multiple Model Filter Based on Student’s t-Distribution for Heavy-Tailed Measurement Noises
por: Li, Dong, et al.
Publicado: (2019) -
Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks
por: Eom, Young-Ho, et al.
Publicado: (2015) -
An Introduction to Heavy-Tailed and Subexponential Distributions
por: Foss, Sergey, et al.
Publicado: (2011) -
An introduction to heavy-tailed and subexponential distributions
por: Foss, Sergey, et al.
Publicado: (2013) -
Univariate stable distributions: models for heavy tailed data
por: Nolan, John P
Publicado: (2020)