Cargando…

Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2

BACKGROUND: Neurotoxicity induced by the amyloid-β (Aβ) peptide is one of the most important pathological mechanisms of Alzheimer's disease (AD). Based on accumulating evidence in AD research, both endoplasmic reticulum stress (ER stress) and alterations in the microRNA (miRNA) network contribu...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qianqian, Liu, Tingjiao, Yang, Shanshan, Zhang, Zhongling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589233/
https://www.ncbi.nlm.nih.gov/pubmed/31281568
http://dx.doi.org/10.1155/2019/2140427
_version_ 1783429359418212352
author Li, Qianqian
Liu, Tingjiao
Yang, Shanshan
Zhang, Zhongling
author_facet Li, Qianqian
Liu, Tingjiao
Yang, Shanshan
Zhang, Zhongling
author_sort Li, Qianqian
collection PubMed
description BACKGROUND: Neurotoxicity induced by the amyloid-β (Aβ) peptide is one of the most important pathological mechanisms of Alzheimer's disease (AD). Based on accumulating evidence in AD research, both endoplasmic reticulum stress (ER stress) and alterations in the microRNA (miRNA) network contribute to the pathogenesis of the disease, making them potential therapeutic targets for AD. The present study was performed to investigate whether miR-34a and the inositol-requiring enzyme 1 (IRE1) are involved in the regulation of Aβ-induced cytotoxicity. METHODS: Human neuroblastoma SH-SY5Y cells were treated with Aβ1-40. Cell viability was assessed by the MTT assay. The integrity of the plasma membrane was assessed by LDH release. The expression levels of XBP1s, IRE1α, p-IRE1α, and Caspase-2 were detected by Western blot analysis. Spliced-XBP1 mRNA and miR-34a were detected by reverse transcription- (RT-) PCR and quantitative real-time PCR, respectively. Caspase-2 activity was measured using the Caspase-2 cellular activity assay kit. The IRE1 inhibitor (STF-083010) was used to determine the role of IRE1α on miR-34a expression. SH-SY5Y cells were transfected with miR-34a mimics to assess the role of miR-34a on the activation of Caspase-2 and the viability of Aβ-exposed SH-SY5Y cells. RESULTS: We showed that Aβ caused concentration- and duration-dependent death of SH-SY5Y cells. The expression levels of XBP1s, p-IRE1α, and Caspase-2 were increased, along with a corresponding decrease in the miR-34a levels in Aβ-exposed SH-SY5Y cells. The IRE1 inhibitor (STF-083010) upregulated the expression of miR-34a and suppressed the activation of Caspase-2, effectively alleviating the Aβ-induced death of SH-SY5Y cells. Transfection studies show that miR-34a mimics inhibit the expression of Caspase-2 and restore the viability of Aβ-exposed SH-SY5Y cells. CONCLUSION: Aβ peptide induced downregulation of miR-34a through the activation of IRE1α, which may induce cytotoxicity by targeting Caspase-2. Upregulation of miR-34a by inhibition of IRE1α has protective effects against Aβ-induced injury in SH-SY5Y cells.
format Online
Article
Text
id pubmed-6589233
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-65892332019-07-07 Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2 Li, Qianqian Liu, Tingjiao Yang, Shanshan Zhang, Zhongling Oxid Med Cell Longev Research Article BACKGROUND: Neurotoxicity induced by the amyloid-β (Aβ) peptide is one of the most important pathological mechanisms of Alzheimer's disease (AD). Based on accumulating evidence in AD research, both endoplasmic reticulum stress (ER stress) and alterations in the microRNA (miRNA) network contribute to the pathogenesis of the disease, making them potential therapeutic targets for AD. The present study was performed to investigate whether miR-34a and the inositol-requiring enzyme 1 (IRE1) are involved in the regulation of Aβ-induced cytotoxicity. METHODS: Human neuroblastoma SH-SY5Y cells were treated with Aβ1-40. Cell viability was assessed by the MTT assay. The integrity of the plasma membrane was assessed by LDH release. The expression levels of XBP1s, IRE1α, p-IRE1α, and Caspase-2 were detected by Western blot analysis. Spliced-XBP1 mRNA and miR-34a were detected by reverse transcription- (RT-) PCR and quantitative real-time PCR, respectively. Caspase-2 activity was measured using the Caspase-2 cellular activity assay kit. The IRE1 inhibitor (STF-083010) was used to determine the role of IRE1α on miR-34a expression. SH-SY5Y cells were transfected with miR-34a mimics to assess the role of miR-34a on the activation of Caspase-2 and the viability of Aβ-exposed SH-SY5Y cells. RESULTS: We showed that Aβ caused concentration- and duration-dependent death of SH-SY5Y cells. The expression levels of XBP1s, p-IRE1α, and Caspase-2 were increased, along with a corresponding decrease in the miR-34a levels in Aβ-exposed SH-SY5Y cells. The IRE1 inhibitor (STF-083010) upregulated the expression of miR-34a and suppressed the activation of Caspase-2, effectively alleviating the Aβ-induced death of SH-SY5Y cells. Transfection studies show that miR-34a mimics inhibit the expression of Caspase-2 and restore the viability of Aβ-exposed SH-SY5Y cells. CONCLUSION: Aβ peptide induced downregulation of miR-34a through the activation of IRE1α, which may induce cytotoxicity by targeting Caspase-2. Upregulation of miR-34a by inhibition of IRE1α has protective effects against Aβ-induced injury in SH-SY5Y cells. Hindawi 2019-06-02 /pmc/articles/PMC6589233/ /pubmed/31281568 http://dx.doi.org/10.1155/2019/2140427 Text en Copyright © 2019 Qianqian Li et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Qianqian
Liu, Tingjiao
Yang, Shanshan
Zhang, Zhongling
Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2
title Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2
title_full Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2
title_fullStr Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2
title_full_unstemmed Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2
title_short Upregulation of miR-34a by Inhibition of IRE1α Has Protective Effect against Aβ-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2
title_sort upregulation of mir-34a by inhibition of ire1α has protective effect against aβ-induced injury in sh-sy5y cells by targeting caspase-2
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589233/
https://www.ncbi.nlm.nih.gov/pubmed/31281568
http://dx.doi.org/10.1155/2019/2140427
work_keys_str_mv AT liqianqian upregulationofmir34abyinhibitionofire1ahasprotectiveeffectagainstabinducedinjuryinshsy5ycellsbytargetingcaspase2
AT liutingjiao upregulationofmir34abyinhibitionofire1ahasprotectiveeffectagainstabinducedinjuryinshsy5ycellsbytargetingcaspase2
AT yangshanshan upregulationofmir34abyinhibitionofire1ahasprotectiveeffectagainstabinducedinjuryinshsy5ycellsbytargetingcaspase2
AT zhangzhongling upregulationofmir34abyinhibitionofire1ahasprotectiveeffectagainstabinducedinjuryinshsy5ycellsbytargetingcaspase2