Cargando…

Antioxidant Effect of a Polyphenol-Rich Murtilla (Ugni molinae Turcz.) Extract and Its Effect on the Regulation of Metabolism in Refrigerated Boar Sperm

The production of reactive oxygen species (ROS) in boar spermatozoa increases in refrigeration; this can have an impact on sperm quality and fertilization capacity. We evaluated the effect of polyphenol-rich aqueous extract of murtilla (Ugni molinae Turcz) on boar sperm stored at 17°C in order to re...

Descripción completa

Detalles Bibliográficos
Autores principales: Jofré, Ignacio, Cuevas, Magdalena, de Castro, Leticia Signori, de Agostini Losano, João Diego, Torres, Mariana Andrade, Alvear, Marysol, Scheuermann, Erick, Andrade, André Furugen Cesar, Nichi, Marcilio, Assumpção, Mayra Elena Ortiz, Romero, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589320/
https://www.ncbi.nlm.nih.gov/pubmed/31281571
http://dx.doi.org/10.1155/2019/2917513
Descripción
Sumario:The production of reactive oxygen species (ROS) in boar spermatozoa increases in refrigeration; this can have an impact on sperm quality and fertilization capacity. We evaluated the effect of polyphenol-rich aqueous extract of murtilla (Ugni molinae Turcz) on boar sperm stored at 17°C in order to reduce oxidative stress and improve sperm quality in the long term. Five experiments were performed: first, characterization of the polyphenol content from five genotypes of murtilla; second, determination of the genotype with the best antioxidant effect (MT-Ex); third, the antioxidant capacity on O(2) (−) and lipid peroxidation; fourth, the influence of MT-Ex on motility, calcium movement, cAMP, and metabolic parameters; and fifth, analysis of long-term refrigeration. The average phenolic content was 344 ppm; gallic acid, catechin, quercetin, myricetin, and kaempferol were detected. All extracts evaluated presented a concentration-dependent antioxidant effect. MT-Ex reduces intracellular O(2) (−)/peroxides but low lipid peroxidation. MT-Ex in nonstimulated ROS conditions reduces sperm motility, mitochondrial membrane potential, cAMP, and ATP, but the succinate dehydrogenase activity remained normal; also, we observed a reduction in calcium movement in in vitro sperm capacitation. The long-term analyses showed that MT-Ex improved sperm motility decay and reduced membrane damage and ROS at 168 h. Based on this study, we propose MT-Ex as a supplement in semen extenders.