Cargando…

Propensity of a picornavirus polymerase to slip on potyvirus-derived transcriptional slippage sites

The substitution rates of viral polymerases have been studied extensively. However less is known about the tendency of these enzymes to ‘slip’ during RNA synthesis to produce progeny RNAs with nucleotide insertions or deletions. We recently described the functional utilization of programmed polymera...

Descripción completa

Detalles Bibliográficos
Autores principales: Stewart, Hazel, Olspert, Allan, Butt, Benjamin G., Firth, Andrew E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591135/
https://www.ncbi.nlm.nih.gov/pubmed/30507373
http://dx.doi.org/10.1099/jgv.0.001189
Descripción
Sumario:The substitution rates of viral polymerases have been studied extensively. However less is known about the tendency of these enzymes to ‘slip’ during RNA synthesis to produce progeny RNAs with nucleotide insertions or deletions. We recently described the functional utilization of programmed polymerase slippage in the family Potyviridae. This slippage results in either an insertion or a substitution, depending on whether the RNA duplex realigns following the insertion. In this study we investigated whether this phenomenon is a conserved feature of superfamily I viral RdRps, by inserting a range of potyvirus-derived slip-prone sequences into a picornavirus, Theiler’s murine encephalomyelitis virus (TMEV). Deep-sequencing analysis of viral transcripts indicates that the TMEV polymerase ‘slips’ at the sequences U(6–7) and A(6–7) to insert additional nucleotides. Such sequences are under-represented within picornaviral genomes, suggesting that slip-prone sequences create a fitness cost. Nonetheless, the TMEV insertional and substitutional spectrum differed from that previously determined for the potyvirus polymerase.