Cargando…

Insights into Allosteric Control of Human Blood Group A and B Glycosyltransferases from Dynamic NMR

Human blood group A and B glycosyltransferases (GTA, GTB) are retaining glycosyltransferases, requiring a catalytic mechanism that conserves the anomeric configuration of the hexopyranose moiety of the donor substrate (UDP‐GalNAc, UDP‐Gal). Previous studies have shown that GTA and GTB cycle through...

Descripción completa

Detalles Bibliográficos
Autores principales: Flügge, Friedemann, Peters, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591795/
https://www.ncbi.nlm.nih.gov/pubmed/31289712
http://dx.doi.org/10.1002/open.201900116
Descripción
Sumario:Human blood group A and B glycosyltransferases (GTA, GTB) are retaining glycosyltransferases, requiring a catalytic mechanism that conserves the anomeric configuration of the hexopyranose moiety of the donor substrate (UDP‐GalNAc, UDP‐Gal). Previous studies have shown that GTA and GTB cycle through structurally distinct states during catalysis. Here, we link binding and release of substrates, substrate‐analogs, and products to transitions between open, semi‐closed, and closed states of the enzymes. Methyl TROSY based titration experiments in combination with zz‐exchange experiments uncover dramatic changes of binding kinetics associated with allosteric interactions between donor‐type and acceptor‐type ligands. Taken together, this highlights how allosteric control of on‐ and off‐rates correlates with conformational changes, driving catalysis to completion.