Cargando…

A New Mode of Chemical Reactivity for Metal‐Free Hydrogen Activation by Lewis Acidic Boranes

We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H(2) outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered b...

Descripción completa

Detalles Bibliográficos
Autores principales: Bennett, Elliot L., Lawrence, Elliot J., Blagg, Robin J., Mullen, Anna S., MacMillan, Fraser, Ehlers, Andreas W., Scott, Daniel J., Sapsford, Joshua S., Ashley, Andrew E., Wildgoose, Gregory G., Slootweg, J. Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594078/
https://www.ncbi.nlm.nih.gov/pubmed/30968535
http://dx.doi.org/10.1002/anie.201900861
Descripción
Sumario:We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H(2) outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5‐dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical‐based, redox pathway involves the homolytic cleavage of H(2), in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.