Cargando…

E3-ubiquitin ligase TRIM6 aggravates myocardial ischemia/reperfusion injury via promoting STAT1-dependent cardiomyocyte apoptosis

Cardiomyocyte apoptosis is a major cause of myocardial ischemia/reperfusion (MI/R) injury, in which the activation of the signal transducer and activator of transcription 1 (STAT1) plays an important role. The E3-ubiquitin ligase TRIM6 has been implicated in regulating STAT1 activity, however, wheth...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Guangwei, Lian, Chen, Yang, Pei, Zheng, Mingming, Ren, He, Wang, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594808/
https://www.ncbi.nlm.nih.gov/pubmed/31171760
http://dx.doi.org/10.18632/aging.101995
Descripción
Sumario:Cardiomyocyte apoptosis is a major cause of myocardial ischemia/reperfusion (MI/R) injury, in which the activation of the signal transducer and activator of transcription 1 (STAT1) plays an important role. The E3-ubiquitin ligase TRIM6 has been implicated in regulating STAT1 activity, however, whether it is associated with MI/R injury and the underlying mechanism are not determined. In this study, by investigating a mouse MI/R injury model, we show that TRIM6 expression is induced in mouse heart following MI/R injury. Additionally, TRIM6 depletion reduces and its overexpression increases myocardial infarct size, serum creatine phosphokinase (CPK) level and cardiomyocyte apoptosis in mice subjected to MI/R injury, indicating that TRIM6 functions to aggravate MI/R injury. Mechanistically, TRIM6 promotes IKKε-dependent STAT1 activation, and the inhibition of IKKε or STAT1 with the specific inhibitor, CAY10576 or fludarabine, abolishes TRIM6 effects on cardiomyocyte apoptosis and MI/R injury. Similarly, TRIM6 mutant lacking the ability to ubiquitinate IKKε and induce IKKε/STAT1 activation also fails to promote cardiomyocyte apoptosis and MI/R injury. Thus, these results suggest that TRIM6 aggravates MI/R injury through promoting IKKε/STAT1 activation-dependent cardiomyocyte apoptosis, and that TRIM6 might represent a novel therapeutic target for alleviating MI/R injury.