Cargando…
pyNVR: investigating factors affecting feature selection from scRNA-seq data for lineage reconstruction
MOTIVATION: The emergence of single-cell RNA-sequencing has enabled analyses that leverage transitioning cell states to reconstruct pseudotemporal trajectories. Multidimensional data sparsity, zero inflation and technical variation necessitate the selection of high-quality features that feed downstr...
Autores principales: | Chen, Bob, Herring, Charles A, Lau, Ken S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596893/ https://www.ncbi.nlm.nih.gov/pubmed/30445607 http://dx.doi.org/10.1093/bioinformatics/bty950 |
Ejemplares similares
-
Cerebro: interactive visualization of scRNA-seq data
por: Hillje, Roman, et al.
Publicado: (2020) -
SCExecute: custom cell barcode-stratified analyses of scRNA-seq data
por: Edwards, Nathan, et al.
Publicado: (2022) -
Scdrake: a reproducible and scalable pipeline for scRNA-seq data analysis
por: Kubovčiak, Jan, et al.
Publicado: (2023) -
SigHotSpotter: scRNA-seq-based computational tool to control cell subpopulation phenotypes for cellular rejuvenation strategies
por: Ravichandran, Srikanth, et al.
Publicado: (2020) -
Reconstructing complex lineage trees from scRNA-seq data using MERLoT
por: Parra, R Gonzalo, et al.
Publicado: (2019)