Cargando…
VARSCOT: variant-aware detection and scoring enables sensitive and personalized off-target detection for CRISPR-Cas9
BACKGROUND: Natural variations in a genome can drastically alter the CRISPR-Cas9 off-target landscape by creating or removing sites. Despite the resulting potential side-effects from such unaccounted for sites, current off-target detection pipelines are not equipped to include variant information. T...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598273/ https://www.ncbi.nlm.nih.gov/pubmed/31248401 http://dx.doi.org/10.1186/s12896-019-0535-5 |
Sumario: | BACKGROUND: Natural variations in a genome can drastically alter the CRISPR-Cas9 off-target landscape by creating or removing sites. Despite the resulting potential side-effects from such unaccounted for sites, current off-target detection pipelines are not equipped to include variant information. To address this, we developed VARiant-aware detection and SCoring of Off-Targets (VARSCOT). RESULTS: VARSCOT identifies only 0.6% of off-targets to be common between 4 individual genomes and the reference, with an average of 82% of off-targets unique to an individual. VARSCOT is the most sensitive detection method for off-targets, finding 40 to 70% more experimentally verified off-targets compared to other popular software tools and its machine learning model allows for CRISPR-Cas9 concentration aware off-target activity scoring. CONCLUSIONS: VARSCOT allows researchers to take genomic variation into account when designing individual or population-wide targeting strategies. VARSCOT is available from https://github.com/BauerLab/VARSCOT. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12896-019-0535-5) contains supplementary material, which is available to authorized users. |
---|