Cargando…

Diiron oxo reactivity in a weak-field environment

Concomitant deprotonation and metalation of a dinucleating cofacial Pacman dipyrrin ligand platform (tBu)dmxH(2) with Fe(2)(Mes)(4) results in formation of a diiron complex ((tBu)dmx)Fe(2)(Mes)(2). Treatment of ((tBu)dmx)Fe(2)(Mes)(2) with one equivalent of water yields the diiron μ-oxo complex ((tB...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Elizabeth J., Kleinlein, Claudia, Musgrave, Rebecca A., Betley, Theodore A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598509/
https://www.ncbi.nlm.nih.gov/pubmed/31341583
http://dx.doi.org/10.1039/c9sc00605b
_version_ 1783430787396272128
author Johnson, Elizabeth J.
Kleinlein, Claudia
Musgrave, Rebecca A.
Betley, Theodore A.
author_facet Johnson, Elizabeth J.
Kleinlein, Claudia
Musgrave, Rebecca A.
Betley, Theodore A.
author_sort Johnson, Elizabeth J.
collection PubMed
description Concomitant deprotonation and metalation of a dinucleating cofacial Pacman dipyrrin ligand platform (tBu)dmxH(2) with Fe(2)(Mes)(4) results in formation of a diiron complex ((tBu)dmx)Fe(2)(Mes)(2). Treatment of ((tBu)dmx)Fe(2)(Mes)(2) with one equivalent of water yields the diiron μ-oxo complex ((tBu)dmx)Fe(2)(μ-O) and free mesitylene. A two-electron oxidation of ((tBu)dmx)Fe(2)(μ-O) gives rise to the diferric complex ((tBu)dmx)Fe(2)(μ-O)Cl(2), and one-electron reduction from this Fe(III)Fe(III) state allows for isolation of a mixed-valent species [Cp(2)Co][((tBu)dmx)Fe(2)(μ-O)Cl(2)]. Both ((tBu)dmx)Fe(2)(μ-O) and [Cp(2)Co][((tBu)dmx)Fe(2)(μ-O)Cl(2)] exhibit basic character at the bridging oxygen atom and can be protonated using weak acids to form bridging diferrous hydroxide species. The basicity of the diferrous oxo ((tBu)dmx)Fe(2)(μ-O) is quantified through studies of the pK(a) of its conjugate acid, [((tBu)dmx)Fe(2)(μ-OH)](+), which is determined to be 15.3(6); interestingly, upon coordination of neutral solvent ligands to yield ((tBu)dmx)Fe(2)(μ-O)(thf)(2), the basicity is increased as observed through an increase in the pK(a) of the conjugate acid [((tBu)dmx)Fe(2)(μ-OH)(thf)(2)](+) to 26.8(6). In contrast, attempts to synthesize a diferric bridging hydroxide by two-electron oxidation of [((tBu)dmx)Fe(2)(μ-OH)(thf)(2)](+) resulted in isolation of ((tBu)dmx)Fe(2)(μ-O)Cl(2) with concomitant loss of a proton, consistent with the pK(a) of the conjugate acid [((tBu)dmx)Fe(2)(μ-OH)Cl(2)](+) determined computationally to be –1.8(6). The foregoing results highlight the intricate interplay between oxidation state and reactivity in diiron μ-oxo units.
format Online
Article
Text
id pubmed-6598509
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-65985092019-07-24 Diiron oxo reactivity in a weak-field environment Johnson, Elizabeth J. Kleinlein, Claudia Musgrave, Rebecca A. Betley, Theodore A. Chem Sci Chemistry Concomitant deprotonation and metalation of a dinucleating cofacial Pacman dipyrrin ligand platform (tBu)dmxH(2) with Fe(2)(Mes)(4) results in formation of a diiron complex ((tBu)dmx)Fe(2)(Mes)(2). Treatment of ((tBu)dmx)Fe(2)(Mes)(2) with one equivalent of water yields the diiron μ-oxo complex ((tBu)dmx)Fe(2)(μ-O) and free mesitylene. A two-electron oxidation of ((tBu)dmx)Fe(2)(μ-O) gives rise to the diferric complex ((tBu)dmx)Fe(2)(μ-O)Cl(2), and one-electron reduction from this Fe(III)Fe(III) state allows for isolation of a mixed-valent species [Cp(2)Co][((tBu)dmx)Fe(2)(μ-O)Cl(2)]. Both ((tBu)dmx)Fe(2)(μ-O) and [Cp(2)Co][((tBu)dmx)Fe(2)(μ-O)Cl(2)] exhibit basic character at the bridging oxygen atom and can be protonated using weak acids to form bridging diferrous hydroxide species. The basicity of the diferrous oxo ((tBu)dmx)Fe(2)(μ-O) is quantified through studies of the pK(a) of its conjugate acid, [((tBu)dmx)Fe(2)(μ-OH)](+), which is determined to be 15.3(6); interestingly, upon coordination of neutral solvent ligands to yield ((tBu)dmx)Fe(2)(μ-O)(thf)(2), the basicity is increased as observed through an increase in the pK(a) of the conjugate acid [((tBu)dmx)Fe(2)(μ-OH)(thf)(2)](+) to 26.8(6). In contrast, attempts to synthesize a diferric bridging hydroxide by two-electron oxidation of [((tBu)dmx)Fe(2)(μ-OH)(thf)(2)](+) resulted in isolation of ((tBu)dmx)Fe(2)(μ-O)Cl(2) with concomitant loss of a proton, consistent with the pK(a) of the conjugate acid [((tBu)dmx)Fe(2)(μ-OH)Cl(2)](+) determined computationally to be –1.8(6). The foregoing results highlight the intricate interplay between oxidation state and reactivity in diiron μ-oxo units. Royal Society of Chemistry 2019-05-09 /pmc/articles/PMC6598509/ /pubmed/31341583 http://dx.doi.org/10.1039/c9sc00605b Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Johnson, Elizabeth J.
Kleinlein, Claudia
Musgrave, Rebecca A.
Betley, Theodore A.
Diiron oxo reactivity in a weak-field environment
title Diiron oxo reactivity in a weak-field environment
title_full Diiron oxo reactivity in a weak-field environment
title_fullStr Diiron oxo reactivity in a weak-field environment
title_full_unstemmed Diiron oxo reactivity in a weak-field environment
title_short Diiron oxo reactivity in a weak-field environment
title_sort diiron oxo reactivity in a weak-field environment
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598509/
https://www.ncbi.nlm.nih.gov/pubmed/31341583
http://dx.doi.org/10.1039/c9sc00605b
work_keys_str_mv AT johnsonelizabethj diironoxoreactivityinaweakfieldenvironment
AT kleinleinclaudia diironoxoreactivityinaweakfieldenvironment
AT musgraverebeccaa diironoxoreactivityinaweakfieldenvironment
AT betleytheodorea diironoxoreactivityinaweakfieldenvironment