Cargando…

Cognitive Impairment That Is Induced by (R)-Ketamine Is Abolished in NMDA GluN2D Receptor Subunit Knockout Mice

Although the N-methyl-D-aspartate receptor antagonist ketamine has attracted attention because of its rapid and sustained antidepressant effects in depressed patients, its side effects have raised some concerns. Ketamine is a racemic mixture of equal amounts of the enantiomers (R)-ketamine and (S)-k...

Descripción completa

Detalles Bibliográficos
Autores principales: Ide, Soichiro, Ikekubo, Yuiko, Mishina, Masayoshi, Hashimoto, Kenji, Ikeda, Kazutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600477/
https://www.ncbi.nlm.nih.gov/pubmed/31135879
http://dx.doi.org/10.1093/ijnp/pyz025
Descripción
Sumario:Although the N-methyl-D-aspartate receptor antagonist ketamine has attracted attention because of its rapid and sustained antidepressant effects in depressed patients, its side effects have raised some concerns. Ketamine is a racemic mixture of equal amounts of the enantiomers (R)-ketamine and (S)-ketamine. The neural mechanisms that underlie the differential effects of these enantiomers remain unclear. We investigated cognitive impairment that was induced by ketamine and its enantiomers in N-methyl-D-aspartate GluN2D receptor subunit knockout (GluN2D-KO) mice. In the novel object recognition test, (RS)-ketamine and (S)-ketamine caused cognitive impairment in both wild-type and GluN2D-KO mice, whereas (R)-ketamine induced such cognitive impairment only in wild-type mice. The present results suggest that the GluN2D subunit plays an important role in cognitive impairment that is induced by (R)-ketamine, whereas this subunit does not appear to be involved in cognitive impairment that is induced by (RS)-ketamine or (S)-ketamine.