Cargando…

Suppressor of Fused regulates the proliferation of postnatal neural stem and precursor cells via a Gli3-dependent mechanism

The ventricular-subventricular zone (V-SVZ) of the forebrain is the source of neurogenic stem/precursor cells for adaptive and homeostatic needs throughout the life of most mammals. Here, we report that Suppressor of Fused (Sufu) plays a critical role in the establishment of the V-SVZ at early neona...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomez, Hector G., Noguchi, Hirofumi, Castillo, Jesse Garcia, Aguilar, David, Pleasure, Samuel J., Yabut, Odessa R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602331/
https://www.ncbi.nlm.nih.gov/pubmed/31142467
http://dx.doi.org/10.1242/bio.039248
Descripción
Sumario:The ventricular-subventricular zone (V-SVZ) of the forebrain is the source of neurogenic stem/precursor cells for adaptive and homeostatic needs throughout the life of most mammals. Here, we report that Suppressor of Fused (Sufu) plays a critical role in the establishment of the V-SVZ at early neonatal stages by controlling the proliferation of distinct subpopulations of stem/precursor cells. Conditional deletion of Sufu in radial glial progenitor cells (RGCs) at E13.5 resulted in a dramatic increase in the proliferation of Sox2+ Type B1 cells. In contrast, we found a significant decrease in Gsx2+ and a more dramatic decrease in Tbr2+ transit amplifying cells (TACs) indicating that innate differences between dorsal and ventral forebrain derived Type B1 cells influence Sufu function. However, many precursors accumulated in the dorsal V-SVZ or failed to survive, demonstrating that despite the over-proliferation of Type B1 cells, they are unable to transition into functional differentiated progenies. These defects were accompanied by reduced Gli3 expression and surprisingly, a significant downregulation of Sonic hedgehog (Shh) signaling. Therefore, these findings indicate a potential role of the Sufu-Gli3 regulatory axis in the neonatal dorsal V-SVZ independent of Shh signaling in the establishment and survival of functional stem/precursor cells in the postnatal dorsal V-SVZ.