Cargando…

The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors

Lymphocyte migration is mediated by G protein–coupled receptors (GPCRs) that respond to chemoattractive molecules. After their activation, GPCRs are phosphorylated by different GPCR kinases (GRKs), which produces distinct functional outcomes through β-arrestins. However, the molecular machinery that...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakai, Akiko, Fujimoto, Jun, Miyata, Haruhiko, Stumm, Ralf, Narazaki, Masashi, Schulz, Stefan, Baba, Yoshihiro, Kumanogoh, Atsushi, Suzuki, Kazuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605747/
https://www.ncbi.nlm.nih.gov/pubmed/31088898
http://dx.doi.org/10.1084/jem.20181494
Descripción
Sumario:Lymphocyte migration is mediated by G protein–coupled receptors (GPCRs) that respond to chemoattractive molecules. After their activation, GPCRs are phosphorylated by different GPCR kinases (GRKs), which produces distinct functional outcomes through β-arrestins. However, the molecular machinery that targets individual GRKs to activated GPCRs remains elusive. Here, we identified a protein complex consisting of copper metabolism MURR1 domain–containing (COMMD) 3 and COMMD8 (COMMD3/8 complex) as an adaptor that selectively recruits a specific GRK to chemoattractant receptors and promotes lymphocyte chemotaxis. COMMD8, whose stability depended on COMMD3, was recruited to multiple chemoattractant receptors. Deficiency of COMMD8 or COMMD3 impaired B cell migration and humoral immune responses. Using CXC-chemokine receptor 4 (CXCR4) as a model, we demonstrated that the COMMD3/8 complex selectively recruited GRK6 and induced GRK6-mediated phosphorylation of the receptor and activation of β-arrestin–mediated signaling. Thus, the COMMD3/8 complex is a specificity determinant of GRK targeting to GPCRs and represents a point of regulation for immune responses.