Cargando…

A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription

Cells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains lim...

Descripción completa

Detalles Bibliográficos
Autores principales: Platanitis, Ekaterini, Demiroz, Duygu, Schneller, Anja, Fischer, Katrin, Capelle, Christophe, Hartl, Markus, Gossenreiter, Thomas, Müller, Mathias, Novatchkova, Maria, Decker, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606597/
https://www.ncbi.nlm.nih.gov/pubmed/31266943
http://dx.doi.org/10.1038/s41467-019-10970-y
_version_ 1783431925775466496
author Platanitis, Ekaterini
Demiroz, Duygu
Schneller, Anja
Fischer, Katrin
Capelle, Christophe
Hartl, Markus
Gossenreiter, Thomas
Müller, Mathias
Novatchkova, Maria
Decker, Thomas
author_facet Platanitis, Ekaterini
Demiroz, Duygu
Schneller, Anja
Fischer, Katrin
Capelle, Christophe
Hartl, Markus
Gossenreiter, Thomas
Müller, Mathias
Novatchkova, Maria
Decker, Thomas
author_sort Platanitis, Ekaterini
collection PubMed
description Cells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA.
format Online
Article
Text
id pubmed-6606597
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66065972019-07-05 A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Platanitis, Ekaterini Demiroz, Duygu Schneller, Anja Fischer, Katrin Capelle, Christophe Hartl, Markus Gossenreiter, Thomas Müller, Mathias Novatchkova, Maria Decker, Thomas Nat Commun Article Cells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. Nature Publishing Group UK 2019-07-02 /pmc/articles/PMC6606597/ /pubmed/31266943 http://dx.doi.org/10.1038/s41467-019-10970-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Platanitis, Ekaterini
Demiroz, Duygu
Schneller, Anja
Fischer, Katrin
Capelle, Christophe
Hartl, Markus
Gossenreiter, Thomas
Müller, Mathias
Novatchkova, Maria
Decker, Thomas
A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription
title A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription
title_full A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription
title_fullStr A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription
title_full_unstemmed A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription
title_short A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription
title_sort molecular switch from stat2-irf9 to isgf3 underlies interferon-induced gene transcription
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606597/
https://www.ncbi.nlm.nih.gov/pubmed/31266943
http://dx.doi.org/10.1038/s41467-019-10970-y
work_keys_str_mv AT platanitisekaterini amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT demirozduygu amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT schnelleranja amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT fischerkatrin amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT capellechristophe amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT hartlmarkus amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT gossenreiterthomas amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT mullermathias amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT novatchkovamaria amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT deckerthomas amolecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT platanitisekaterini molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT demirozduygu molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT schnelleranja molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT fischerkatrin molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT capellechristophe molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT hartlmarkus molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT gossenreiterthomas molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT mullermathias molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT novatchkovamaria molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription
AT deckerthomas molecularswitchfromstat2irf9toisgf3underliesinterferoninducedgenetranscription