Cargando…
Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice
Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in wor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607320/ https://www.ncbi.nlm.nih.gov/pubmed/31309134 http://dx.doi.org/10.1016/j.ynstr.2019.100161 |
_version_ | 1783432072964079616 |
---|---|
author | Dominguez, Gaelle Henkous, Nadia Prevot, Thomas David, Vincent Guillou, Jean-Louis Belzung, Catherine Mons, Nicole Béracochéa, Daniel |
author_facet | Dominguez, Gaelle Henkous, Nadia Prevot, Thomas David, Vincent Guillou, Jean-Louis Belzung, Catherine Mons, Nicole Béracochéa, Daniel |
author_sort | Dominguez, Gaelle |
collection | PubMed |
description | Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM. After a 6 week-UCMS exposure, C57BL/6 J male mice exhibited increased anxiety- and depressive-like behaviors when measured one week later and displayed WM impairments timely associated with increased plasma corticosterone response. In chronically stressed mice, basal phosphorylated/activated CREB (pCREB) was markedly increased in the PFC and the CA1 area of the dHPC and WM testing did not elicit any further increase in pCREB in the two regions. Using microdialysis samples from freely-moving mice, we found that WM testing co-occurred with a rapid and sustained increase in corticosterone response in the PFC while there was a late, non-significant rise of corticosterone in the dHPC. The results also show that non-stressed mice injected with corticosterone (2 mg/kg i.p.) before WM testing displayed behavioral and molecular alterations similar to those observed in stressed animals while a pre-WM testing metyrapone injection (35 mg/kg i.p.), a corticosterone synthesis inhibitor, prevented the effects of UCMS exposure. Overall, the abnormal regional increase of corticosterone concentrations mainly in the PFC emerges as a key factor of enduring WM dysfunctions in UCMS-treated animals. |
format | Online Article Text |
id | pubmed-6607320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66073202019-07-15 Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice Dominguez, Gaelle Henkous, Nadia Prevot, Thomas David, Vincent Guillou, Jean-Louis Belzung, Catherine Mons, Nicole Béracochéa, Daniel Neurobiol Stress Original Research Article Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM. After a 6 week-UCMS exposure, C57BL/6 J male mice exhibited increased anxiety- and depressive-like behaviors when measured one week later and displayed WM impairments timely associated with increased plasma corticosterone response. In chronically stressed mice, basal phosphorylated/activated CREB (pCREB) was markedly increased in the PFC and the CA1 area of the dHPC and WM testing did not elicit any further increase in pCREB in the two regions. Using microdialysis samples from freely-moving mice, we found that WM testing co-occurred with a rapid and sustained increase in corticosterone response in the PFC while there was a late, non-significant rise of corticosterone in the dHPC. The results also show that non-stressed mice injected with corticosterone (2 mg/kg i.p.) before WM testing displayed behavioral and molecular alterations similar to those observed in stressed animals while a pre-WM testing metyrapone injection (35 mg/kg i.p.), a corticosterone synthesis inhibitor, prevented the effects of UCMS exposure. Overall, the abnormal regional increase of corticosterone concentrations mainly in the PFC emerges as a key factor of enduring WM dysfunctions in UCMS-treated animals. Elsevier 2019-04-04 /pmc/articles/PMC6607320/ /pubmed/31309134 http://dx.doi.org/10.1016/j.ynstr.2019.100161 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Article Dominguez, Gaelle Henkous, Nadia Prevot, Thomas David, Vincent Guillou, Jean-Louis Belzung, Catherine Mons, Nicole Béracochéa, Daniel Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
title | Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
title_full | Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
title_fullStr | Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
title_full_unstemmed | Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
title_short | Sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
title_sort | sustained corticosterone rise in the prefrontal cortex is a key factor for chronic stress-induced working memory deficits in mice |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607320/ https://www.ncbi.nlm.nih.gov/pubmed/31309134 http://dx.doi.org/10.1016/j.ynstr.2019.100161 |
work_keys_str_mv | AT dominguezgaelle sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT henkousnadia sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT prevotthomas sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT davidvincent sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT guilloujeanlouis sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT belzungcatherine sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT monsnicole sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice AT beracocheadaniel sustainedcorticosteroneriseintheprefrontalcortexisakeyfactorforchronicstressinducedworkingmemorydeficitsinmice |