Cargando…

The PPARγ agonist pioglitazone prevents TGF-β induced renal fibrosis by repressing EGR-1 and STAT3

BACKGROUND: It has been proposed that peroxisome proliferator-activated receptor-γ (PPARγ) agonists might reduce renal fibrosis, however, several studies had contradictory results. Moreover, the possible interaction of TGF-β(1), PPARγ, and transcription factors in renal fibrosis have not been invest...

Descripción completa

Detalles Bibliográficos
Autores principales: Németh, Ágnes, Mózes, Miklós M., Calvier, Laurent, Hansmann, Georg, Kökény, Gábor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610924/
https://www.ncbi.nlm.nih.gov/pubmed/31277592
http://dx.doi.org/10.1186/s12882-019-1431-x
Descripción
Sumario:BACKGROUND: It has been proposed that peroxisome proliferator-activated receptor-γ (PPARγ) agonists might reduce renal fibrosis, however, several studies had contradictory results. Moreover, the possible interaction of TGF-β(1), PPARγ, and transcription factors in renal fibrosis have not been investigated. We hypothesized that oral pioglitazone treatment would inhibit TGF-β–driven renal fibrosis and its progression, by modulating profibrotic transcription factors in TGF-β(1) transgenic mice. METHODS: Male C57Bl/6 J mice (control, CTL, n = 14) and TGF-β overexpressing transgenic mice (TGFβ, n = 14, having elevated plasma TGF-β(1) level) were divided in two sets at 10 weeks of age. Mice in the first set were fed with regular rodent chow (CTL and TGFβ, n = 7/group). Mice in the second set were fed with chow containing pioglitazone (at a dose of 20 mg/kg/day, CTL + Pio and TGFβ+Pio, n = 7/group). After 5 weeks of treatment, blood pressure was assessed and urine samples were collected, and the kidneys were analyzed for histology, mRNA and protein expression. RESULTS: TGF-β(1) induced glomerulosclerosis and tubulointerstitial damage were significantly reduced by pioglitazone. Pioglitazone inhibited renal mRNA expression of all the profibrotic effectors: type-III collagen, TGF-β(1), CTGF and TIMP-1, and alike transcription factors cFos/cJun and protein expression of EGR-1, and STAT3 protein phosphorylation. CONCLUSIONS: Oral administration of PPARγ agonist pioglitazone significantly reduces TGF-β(1)-driven renal fibrosis, via the attenuation of EGR-1, STAT3 and AP-1. This implies that PPARγ agonists might be effective in the treatment of chronic kidney disease patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12882-019-1431-x) contains supplementary material, which is available to authorized users.