Cargando…
Uncovering biomarker genes with enriched classification potential from Hallmark gene sets
Given the complex relationship between gene expression and phenotypic outcomes, computationally efficient approaches are needed to sift through large high-dimensional datasets in order to identify biologically relevant biomarkers. In this report, we describe a method of identifying the most salient...
Autores principales: | Targonski, Colin A., Shearer, Courtney A., Shealy, Benjamin T., Smith, Melissa C., Feltus, F. Alex |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611793/ https://www.ncbi.nlm.nih.gov/pubmed/31278367 http://dx.doi.org/10.1038/s41598-019-46059-1 |
Ejemplares similares
-
Cellular State Transformations Using Deep Learning for Precision Medicine Applications
por: Targonski, Colin, et al.
Publicado: (2020) -
NetExtractor: Extracting a Cerebellar Tissue Gene Regulatory Network Using Differentially Expressed High Mutual Information Binary RNA Profiles
por: Husain, Benafsh, et al.
Publicado: (2020) -
Sorting Five Human Tumor Types Reveals Specific Biomarkers and Background Classification Genes
por: Roche, Kimberly E., et al.
Publicado: (2018) -
Survival-related genes are diversified across cancers but generally enriched in cancer hallmark pathways
por: Wang, Po-Wen, et al.
Publicado: (2022) -
ChIP-Enrich: gene set enrichment testing for ChIP-seq data
por: Welch, Ryan P., et al.
Publicado: (2014)