Cargando…
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
SUMMARY: Support Vector Machines with gapped k-mer kernels (gkm-SVMs) have been used to learn predictive models of regulatory DNA sequence. However, interpreting predictive sequence patterns learned by gkm-SVMs can be challenging. Existing interpretation methods such as deltaSVM, in-silico mutagenes...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612808/ https://www.ncbi.nlm.nih.gov/pubmed/31510661 http://dx.doi.org/10.1093/bioinformatics/btz322 |