Cargando…
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
SUMMARY: Support Vector Machines with gapped k-mer kernels (gkm-SVMs) have been used to learn predictive models of regulatory DNA sequence. However, interpreting predictive sequence patterns learned by gkm-SVMs can be challenging. Existing interpretation methods such as deltaSVM, in-silico mutagenes...
Autores principales: | Shrikumar, Avanti, Prakash, Eva, Kundaje, Anshul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612808/ https://www.ncbi.nlm.nih.gov/pubmed/31510661 http://dx.doi.org/10.1093/bioinformatics/btz322 |
Ejemplares similares
-
Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts
por: Nair, Surag, et al.
Publicado: (2019) -
Precise modelling and interpretation of bioactivities of ligands targeting G protein-coupled receptors
por: Wu, Jiansheng, et al.
Publicado: (2019) -
DeepLigand: accurate prediction of MHC class I ligands using peptide embedding
por: Zeng, Haoyang, et al.
Publicado: (2019) -
Integrating read-based and population-based phasing for dense and accurate haplotyping of individual genomes
por: Bansal, Vikas
Publicado: (2019) -
SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences
por: Zhang, Jian, et al.
Publicado: (2019)