Cargando…

Bayesian metabolic flux analysis reveals intracellular flux couplings

MOTIVATION: Metabolic flux balance analysis (FBA) is a standard tool in analyzing metabolic reaction rates compatible with measurements, steady-state and the metabolic reaction network stoichiometry. Flux analysis methods commonly place model assumptions on fluxes due to the convenience of formulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Heinonen, Markus, Osmala, Maria, Mannerström, Henrik, Wallenius, Janne, Kaski, Samuel, Rousu, Juho, Lähdesmäki, Harri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612884/
https://www.ncbi.nlm.nih.gov/pubmed/31510676
http://dx.doi.org/10.1093/bioinformatics/btz315
Descripción
Sumario:MOTIVATION: Metabolic flux balance analysis (FBA) is a standard tool in analyzing metabolic reaction rates compatible with measurements, steady-state and the metabolic reaction network stoichiometry. Flux analysis methods commonly place model assumptions on fluxes due to the convenience of formulating the problem as a linear programing model, while many methods do not consider the inherent uncertainty in flux estimates. RESULTS: We introduce a novel paradigm of Bayesian metabolic flux analysis that models the reactions of the whole genome-scale cellular system in probabilistic terms, and can infer the full flux vector distribution of genome-scale metabolic systems based on exchange and intracellular (e.g. 13C) flux measurements, steady-state assumptions, and objective function assumptions. The Bayesian model couples all fluxes jointly together in a simple truncated multivariate posterior distribution, which reveals informative flux couplings. Our model is a plug-in replacement to conventional metabolic balance methods, such as FBA. Our experiments indicate that we can characterize the genome-scale flux covariances, reveal flux couplings, and determine more intracellular unobserved fluxes in Clostridium acetobutylicum from 13C data than flux variability analysis. AVAILABILITY AND IMPLEMENTATION: The COBRA compatible software is available at github.com/markusheinonen/bamfa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.