Cargando…
Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization
PURPOSE: To develop and validate a classifier system for prediction of prostate cancer (PCa) Gleason score (GS) using radiomics and texture features of T(2)-weighted imaging (T(2)w), diffusion weighted imaging (DWI) acquired using high b values, and T(2)-mapping (T(2)). METHODS: T(2)w, DWI (12 b val...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613688/ https://www.ncbi.nlm.nih.gov/pubmed/31283771 http://dx.doi.org/10.1371/journal.pone.0217702 |