Cargando…
Exact and efficient hybrid Monte Carlo algorithm for accelerated Bayesian inference of gene expression models from snapshots of single-cell transcripts
Single cells exhibit a significant amount of variability in transcript levels, which arises from slow, stochastic transitions between gene expression states. Elucidating the nature of these states and understanding how transition rates are affected by different regulatory mechanisms require state-of...
Autores principales: | Lin, Yen Ting, Buchler, Nicolas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615996/ https://www.ncbi.nlm.nih.gov/pubmed/31301707 http://dx.doi.org/10.1063/1.5110503 |
Ejemplares similares
-
Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm
por: Liang, Rubing, et al.
Publicado: (2022) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Monte Carlo samplers for efficient network inference
por: Kilic, Zeliha, et al.
Publicado: (2023) -
BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells
por: Gómez-Schiavon, Mariana, et al.
Publicado: (2017) -
Efficient quadrature rules for illumination integrals: from quasi Monte Carlo to Bayesian Monte Carlo
por: Marques, Ricardo, et al.
Publicado: (2015)