Cargando…

Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis

Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as anti-fibrosis, apoptosis, anti-proliferation, immunomodulatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jun-Won, Oh, Ji Eun, Rhee, Ki-Jong, Yoo, Byung-Su, Eom, Young Woo, Park, Sang Wook, Lee, Ji Hyun, Son, Jung-Woo, Youn, Young Jin, Ahn, Min-Soo, Ahn, Sung-Gyun, Kim, Jang-Young, Lee, Seung-Hwan, Yoon, Junghan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616223/
https://www.ncbi.nlm.nih.gov/pubmed/31006829
http://dx.doi.org/10.1007/s11010-019-03542-7
Descripción
Sumario:Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as anti-fibrosis, apoptosis, anti-proliferation, immunomodulation, and anti-viral activities. However, the role of IFN-γ in cardiac myofibroblasts is not well established. Therefore, we investigated the anti-fibrotic effects of IFN-γ in human cardiac myofibroblasts (hCMs) in vitro and whether indoleamine 2,3-dioxygenase (IDO), induced by IFN-γ and resulting in cell cycle arrest, plays an important role in regulating the biological activity of hCMs. After IFN-γ treatment, cell signaling pathways and DNA contents were analyzed to assess the biological activity of IFN-γ in hCMs. In addition, an IDO inhibitor (1-methyl tryptophan; 1-MT) was used to assess whether IDO plays a key role in regulating hCMs. IFN-γ significantly inhibited hCM proliferation, and IFN-γ-induced IDO expression caused cell cycle arrest in G0/G1 through tryptophan depletion. Moreover, IFN-γ treatment gradually suppressed the expression of α-smooth muscle actin. When IDO activity was inhibited by 1-MT, marked apoptosis was observed in hCMs through the induction of interferon regulatory factor, Fas, and Fas ligand. Our results suggest that IFN-γ plays key roles in anti-proliferative and anti-fibrotic activities in hCMs and further induces apoptosis via IDO inhibition. In conclusion, co-treatment with IFN-γ and 1-MT can ameliorate fibrosis in cardiac myofibroblasts through apoptosis.