Cargando…

Cell type-specific epigenetic links to schizophrenia risk in the brain

BACKGROUND: The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-specific whole-genome methylomes (N = 95) and transcriptomes (N = 89) f...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendizabal, Isabel, Berto, Stefano, Usui, Noriyoshi, Toriumi, Kazuya, Chatterjee, Paramita, Douglas, Connor, Huh, Iksoo, Jeong, Hyeonsoo, Layman, Thomas, Tamminga, Carol A., Preuss, Todd M., Konopka, Genevieve, Yi, Soojin V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617737/
https://www.ncbi.nlm.nih.gov/pubmed/31288836
http://dx.doi.org/10.1186/s13059-019-1747-7
Descripción
Sumario:BACKGROUND: The importance of cell type-specific epigenetic variation of non-coding regions in neuropsychiatric disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generate cell type-specific whole-genome methylomes (N = 95) and transcriptomes (N = 89) from neurons and oligodendrocytes obtained from brain tissue of patients with schizophrenia and matched controls. RESULTS: The methylomes of the two cell types are highly distinct, with the majority of differential DNA methylation occurring in non-coding regions. DNA methylation differences between cases and controls are subtle compared to cell type differences, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA methylation between control and schizophrenia tends to occur in cell type differentially methylated sites, highlighting the significance of cell type-specific epigenetic dysregulation in a complex neuropsychiatric disorder. CONCLUSIONS: Our results provide novel and comprehensive methylome and transcriptome data from distinct cell populations within patient-derived brain tissues. This data clearly demonstrate that cell type epigenetic-differentiated sites are preferentially targeted by disease-associated epigenetic dysregulation. We further show reduced cell type epigenetic distinction in schizophrenia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13059-019-1747-7) contains supplementary material, which is available to authorized users.