Cargando…

Apolipoprotein E associated with reconstituted high‐density lipoprotein‐like particles is protected from aggregation

Apolipoprotein E (APOE) genotype determines Alzheimer's disease (AD) susceptibility, with the APOE ε4 allele being an established risk factor for late‐onset AD. The ApoE lipidation status has been reported to impact amyloid‐beta (Aβ) peptide metabolism. The details of how lipidation affects Apo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hubin, Ellen, Verghese, Philip B., van Nuland, Nico, Broersen, Kerensa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617784/
https://www.ncbi.nlm.nih.gov/pubmed/31058310
http://dx.doi.org/10.1002/1873-3468.13428
Descripción
Sumario:Apolipoprotein E (APOE) genotype determines Alzheimer's disease (AD) susceptibility, with the APOE ε4 allele being an established risk factor for late‐onset AD. The ApoE lipidation status has been reported to impact amyloid‐beta (Aβ) peptide metabolism. The details of how lipidation affects ApoE behavior remain to be elucidated. In this study, we prepared lipid‐free and lipid‐bound ApoE particles, mimicking the high‐density lipoprotein particles found in vivo, for all three isoforms (ApoE2, ApoE3, and ApoE4) and biophysically characterized them. We find that lipid‐free ApoE in solution has the tendency to aggregate in vitro in an isoform‐dependent manner under near‐physiological conditions and that aggregation is impeded by lipidation of ApoE.